• Title/Summary/Keyword: rotational degrees of freedom

Search Result 93, Processing Time 0.024 seconds

Design and Control of 3 D.O.F. Spherical Actuator Using the Magnetic Force of the Electromagnets (전자석의 자기력 제어를 이용한 구형 3 자유도 액추에이터의 설계 및 제어)

  • Baek, Yun-Su;Yang, Chang-Il;Park, Jun-Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1341-1349
    • /
    • 2001
  • In this paper, 3 D.O.F. actuator, which has three degrees of freedom in one joint, is proposed. The proposed 3 D.O.F. spherical actuator is composed of the rotor and atator. The upper plate of the stator supports the rotor and five electromagnets are located at the base of the stator. The rotor has two permanent magnets, and each rotational axis of the rotor gimbal system is supported by the bearing. To find out the governing equations for the torque generation, Coulombs law and Lorentz force with respect to magnetism is applied. As the experimental results, if the distance between electromagnet and permanent maget is far enough, the force between these magnets can be expressed from current of coils and z-axial distance. For the purpose of control 3 D.O.F. actuator, PID control law is applied. The experimental results are presented to show the validity of the proposed 3 D.O.F. actuator.

Stiffness Analysis of a Low-DOF Parallel Manipulator using the Theory of Reciprocal Screws (역나선 이론을 이용한 저자유도 평행구조 기구의 강성해석)

  • Kim, Han-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.573-578
    • /
    • 2004
  • This paper presents a methodology for the stiffness analysis of a low-DOF parallel manipulator. A low-DOF parallel manipulator is a spatial parallel manipulator which has less than six degrees of freedom. The reciprocal screws of actuations and constraints in each leg can be determined by making use of the theory of reciprocal screws, which provide information about reaction forces due to actuations and constraints. When pure force is applied to a leg, the leg stiffness is modeled as a linear spring along the line. For pure couple, it is modeled as a rotational spring about the axis. It is shown that the stiffness model of an F-DOF parallel manipulator consists of F springs related to actuations and 6-F springs related to constraints connected from the moving platform to the base in parallel. The $6{\times}6$ Cartesian stiffness matrix is obtained, which is the sum of the Cartesian stiffness matrices of actuations and constraints. Finally, a 3-UPU parallel manipulator is used as an example to demonstrate the methodology.

  • PDF

A Study on the Cooperative Kinematic Inter-operation of 2-Axis (Tilting/Rolling) Additional Axes with a 6-Axis Articulated Robot Using Simulink of MATLAB and Recurdyn (MATLAB과 Recurdyn의 Simulink를 활용한 2축 부가 축과 6축 수직 다관절로봇의 기구적 연동에 관한 연구)

  • Bae, Seung-Min;Chung, Won-Jee;Noh, Seong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.16-23
    • /
    • 2021
  • Currently, 6-axis articulated robots are used throughout the industry because of their 6-dof (degrees of freedom) and usability. However, 6-axis articulated robots have a fixed base and their movements are limited by the rotational operating range of each axis. If the angle of the 2-axis additional axes can be adjusted according to the position and orientation of the end-effector of the 6-axis articulated robot, the effectiveness of the 6-axis articulated robot can be further increased in areas where the angle is important, such as welding. Therefore, in this paper, we proposed a cooperative kinematic inter-operation strategy. The strategy will be verified using the Simulink of MATLABⓇ, an engineering program, and RecurdynⓇ, a dynamic simulation program.

Analysis of Principle and Performance of a New 4DOF Hybrid Magnetic Bearing

  • Bai, Guochang;Sun, Jinji;Han, Weitao;Ren, Hongliang
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • To satisfy the requirement of magnetically suspended control moment gyroscope (MSCMG) that magnetic bearing can provide torque, a novel 4DOF hybrid magnetic bearing (HMB) with integrated structure was designed. Mathematical models of forces and torques are established by using equivalent magnetic circuit method. The current stiffness, displacement stiffness, tilting current stiffness and angular stiffness of the 4DOF hybrid magnetic bearing are derived by the mathematical models. Equivalent magnetic circuit method and finite element method (FEM) simulation results indicate that the force has a good linear relationship with both displacement and current, and the torque has a good linear relationship with angular displacement and current. The novel 4DOF HMB is capable of achieving control in both two radial translational degrees of freedom (DOF) and also two radial rotational DOFs. The 4DOF HMB is well adapted to MSCMG system, exhibiting advantages in the controllable DOF, light weight and easy to control.

Dynamic Analysis of Rotating Bodies Using Model Order Reduction (모델차수축소기법을 이용한 회전체의 동해석)

  • Han, Jeong-Sam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.443-444
    • /
    • 2011
  • This paper discusses a model order reduction for large order rotor dynamics systems results from the finite element discretization. Typical rotor systems consist of a rotor, built-on parts, and a support system, and require prudent consideration in their dynamic analysis models because they include unsymmetric stiffness, localized nonproportional damping and frequency dependent gyroscopic effects. When the finite element model has a very large number of degrees of freedom because of complex geometry, repeated dynamic analyses to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to finish within a practical design cycle. In this paper, the Krylov-based model order reduction via moment matching significantly speeds up the dynamic analyses necessary to check eigenvalues and critical speeds of a Nelson-Vaugh rotor system. With this approach the dynamic simulation is efficiently repeated via a reduced system by changing a running rotational speed because it can be preserved as a parameter in the process of model reduction. The Campbell diagram by the reduced system shows very good agreement with that of the original system. A 3-D finite element model of the Nelson-Vaugh rotor system is taken as a numerical example to demonstrate the advantages of this model reduction for rotor dynamic simulation.

  • PDF

Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.19-36
    • /
    • 2014
  • This paper focuses on a model order reduction (MOR) for large-scale rotordynamic systems by using finite element discretization. Typical rotor-bearing systems consist of a rotor, built-on parts, and a support system. These systems require careful consideration in their dynamic analysis modeling because they include unsymmetrical stiffness, localized nonproportional damping, and frequency-dependent gyroscopic effects. Because of this complex geometry, the finite element model under consideration may have a very large number of degrees of freedom. Thus, the repeated dynamic analyses used to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to complete within a practical design cycle. In this study, we demonstrate that a Krylov subspace-based MOR via moment matching significantly speeds up the rotordynamic analyses needed to check the whirling frequencies and critical speeds of large rotor systems. This approach is very efficient, because it is possible to repeat the dynamic simulation with the help of a reduced system by changing the operating rotational speed, which can be preserved as a parameter in the process of model reduction. Two examples of rotordynamic systems show that the suggested MOR provides a significant reduction in computational cost for a Campbell diagram analysis, while maintaining accuracy comparable to that of the original systems.

MSBS-SPR Integrated System Allowing Wider Controllable Range for Effective Wind Tunnel Test

  • Sung, Yeol-Hun;Lee, Dong-Kyu;Han, Jong-Seob;Kim, Ho-Young;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.414-424
    • /
    • 2017
  • This paper introduces an experimental device which can measure accurate aerodynamic forces without support interference in wide experimental region for wind tunnel test of micro aerial vehicles (MAVs). A stereo pattern recognition (SPR) method was introduced to a magnetic suspension and balance system (MSBS), which can eliminate support interference by levitating the experimental model, to establish wider experimental region; thereby MSBS-SPR integrated system was developed. The SPR method is non-contact, highly accurate three-dimensional position measurement method providing wide measurement range. To evaluate the system performance, a series of performance evaluations including SPR system measurement accuracy and 6 degrees of freedom (DOFs) position/attitude control of the MAV model were conducted. This newly developed system could control the MAV model rapidly and accurately within almost 60mm for translational DOFs and 40deg for rotational DOFs inside of $300{\times}300mm$ test section. In addition, a static wind tunnel test was conducted to verify the aerodynamic force measurement capability. It turned out that this system could accurately measure the aerodynamic forces in low Reynolds number, even for the weak forces which were hard to measure using typical balance system, without making any mechanical contact with the MAV model.

Experimentally validated FEA models of HF2V damage free steel connections for use in full structural analyses

  • Desombre, Jonathan;Rodgers, Geoffrey W.;MacRae, Gregory A.;Rabczuk, Timon;Dhakal, Rajesh P.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.385-399
    • /
    • 2011
  • The aim of this research is to model the behaviour of recently developed high force to volume (HF2V) passive energy dissipation devices using a simple finite element (FE) model. Thus, the end result will be suitable for use in a standard FE code to enable computationally fast and efficient analysis and design. Two models are developed. First, a detailed axial model that models an experimental setup is created to validate the approach versus experimental results. Second, a computationally and geometrically simpler equivalent rotational hinge element model is presented. Both models are created in ABAQUS, a standard nonlinear FE code. The elastic, plastic and damping properties of the elements used to model the HF2V devices are based on results from a series of quasi-static force-displacement loops and velocity based tests of these HF2V devices. Comparison of the FE model results with the experimental results from a half scale steel beam-column sub-assembly are within 10% error. The rotational model matches the output of the more complex and computationally expensive axial element model. The simpler model will allow computationally efficient non-linear analysis of large structures with many degrees of freedom, while the more complex and physically accurate axial model will allow detailed analysis of joint connection architecture. Their high correlation to experimental results helps better guarantee the fidelity of the results of such investigations.

Internal Energy Distributions of OH Products in the Reaction of O(3PJ) with HSiCl3

  • Kwak, Hyon-Tae;Ha, Seung-Chul;Jang, Sung-Woo;Kim, Hong-Lae;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.429-434
    • /
    • 2009
  • The OH($X^2{\Pi},\;{\nu}$"=0, 1) internal state distributions from the reaction of electronically ground state oxygen atoms with HSi$Cl_3$ were measured using laser-induced fluorescence. The ground-state O$(^3P_J)$ atoms with kinetic energies above the reaction barrier were produced by photolysis of N$O_2$ at 355 nm. The OH product revealed strong vibrational population inversion, P(${\nu}$"=1)/P(${\nu}$"=0) = 4.0 ${\pm}$ 0.6, and rotational distributions in both vibrational states exhibit substantial rotational excitations to the limit of total available energy. However, no preferential populations in either of the two $\Lambda$ doublet states were observed from the micropopulations, which supports a mechanism involving a direct abstraction of hydrogen by the atomic oxygen. It was also found that the collision energy between O and HSi$Cl_3$ is effectively coupled into the excitation of the internal degrees of freedom of the OH product ($$ = 0.62, and $<\;f_{rot}>$ = 0.20). The dynamics appear consistent with expectations for the kinematically constrained reaction which supports the reaction type, heavy + light-heavy $\rightarrow$ heavy-light + heavy (H + LH′ $\rightarrow$ HL + H′). The dynamics of oxygen atom collision with HSi$Cl_3$ are discussed in comparison to those with Si$H_4$.

Estimation of Structural Dynamic Responses Using Partial Response Measurements (부분적 측정데이타를 이용한 구조시스템의 동적응답 추정기법)

  • 김학수;양경택
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.75-85
    • /
    • 2000
  • When applying a system identification technique, which incorporates an experimental model to a corresponding finite element model of a structure, one of the major problems is the large difference in the numbers of degrees of freedom (dof) between the two models. While there are large number of dofs in a finite element model, the number of measurement points is practically limited. So it is very difficult to incorporate them. Especially rotational dofs are hard to measure. In this study a method is presented for estimating structural dynamic responses at unmeasurable locations in frequency domain. The proposed method is tested numerically and the feasibility for practical application has been demonstrated through an example structure under moving loads, where translational and rotational dofs of beam at a center point are estimated from the partial measurements of responses at accessible points.

  • PDF