DOI QR코드

DOI QR Code

Internal Energy Distributions of OH Products in the Reaction of O(3PJ) with HSiCl3

  • Published : 2009.02.20

Abstract

The OH($X^2{\Pi},\;{\nu}$"=0, 1) internal state distributions from the reaction of electronically ground state oxygen atoms with HSi$Cl_3$ were measured using laser-induced fluorescence. The ground-state O$(^3P_J)$ atoms with kinetic energies above the reaction barrier were produced by photolysis of N$O_2$ at 355 nm. The OH product revealed strong vibrational population inversion, P(${\nu}$"=1)/P(${\nu}$"=0) = 4.0 ${\pm}$ 0.6, and rotational distributions in both vibrational states exhibit substantial rotational excitations to the limit of total available energy. However, no preferential populations in either of the two $\Lambda$ doublet states were observed from the micropopulations, which supports a mechanism involving a direct abstraction of hydrogen by the atomic oxygen. It was also found that the collision energy between O and HSi$Cl_3$ is effectively coupled into the excitation of the internal degrees of freedom of the OH product ($$ = 0.62, and $<\;f_{rot}>$ = 0.20). The dynamics appear consistent with expectations for the kinematically constrained reaction which supports the reaction type, heavy + light-heavy $\rightarrow$ heavy-light + heavy (H + LH′ $\rightarrow$ HL + H′). The dynamics of oxygen atom collision with HSi$Cl_3$ are discussed in comparison to those with Si$H_4$.

Keywords

References

  1. Zhang, Q.; Gu, Y.; Wang, S. J. Chem. Phys. 2003, 118, 633 https://doi.org/10.1063/1.1523904
  2. Zhang, Q. Z.; Wang, C. S.; Wang, S. K.; Gu, Y. S. Chinese Chemical Letters 2002, 13, 662.
  3. Huynh, L. K.; Zhang, S.;Truong, T. N. Combustion and Flame 2008, 152, 177 https://doi.org/10.1016/j.combustflame.2007.08.006
  4. Nam, M. J.; Youn, S. E.; Li., L.; Choi, J. H. J. Chem. Phys. 2005, 123, 211105. https://doi.org/10.1063/1.2141562
  5. Balucani, N.; Stranges, D.; Casavecchia, P.; Volpi, G. G. J. Chem. Phys. 2004, 120, 9571. https://doi.org/10.1063/1.1714809
  6. Garton, D. J.; Minton, T. K. J. Phys. Chem. A 2003, 107, 4583. https://doi.org/10.1021/jp0226026
  7. Troya, D.;García-Molina, E. J. Phys. Chem. A 2005, 109, 3015. https://doi.org/10.1021/jp044304+
  8. Capozza, G.; Segoloni, E.; Leonori, F.; Volpi, G. G.;Casavecchia, P. J. Chem. Phys. 2004, 120, 4557. https://doi.org/10.1063/1.1652013
  9. Rand, R. J. J. Vac. Sci. Technol. 1979, 16, 420. https://doi.org/10.1116/1.569965
  10. Boyer, P.K.; Roche, G. A.; Ritchie, W. H.; Collins, G. J. Appl. Phys. Lett. 1982, 40, 716. https://doi.org/10.1063/1.93202
  11. Chen, J. Y.; Henderson, R. C.; Hall, J. T.;Peters, J. W. J. Electrochem. Soc. 1984, 131, 2146. https://doi.org/10.1149/1.2116038
  12. Herron, J. T.; Huie, R. E. J. Phys. Chem. Ref. Data 1974, 2, 467. https://doi.org/10.1063/1.3253125
  13. Huie, R. E.; Herron, J. T. Prog. React. Kinet. 1975, 8, 1.
  14. Andresen, P.; Luntz, A. C. J. Chem. Phys. 1980, 72, 5842. https://doi.org/10.1063/1.439108
  15. Luntz, A. C.; Andresen, P. J. Chem. Phys. 1980, 72, 5851. https://doi.org/10.1063/1.439109
  16. Kleinermanns, K.; Luntz, A. C. J. Chem. Phys. 1982, 77, 3533 https://doi.org/10.1063/1.444253
  17. Kleinermanns, K.; Luntz, A. C. J. Chem. Phys. 1982, 77, 3774. https://doi.org/10.1063/1.444247
  18. Kleinermanns, K.; Luntz, A. C. J. Chem. Phys. 1982, 77, 3537. https://doi.org/10.1063/1.444254
  19. Dutton, N. J.; Fletcher, I. W.; Whitehead, J. C. Mol. Phys. 1984, 52, 475. https://doi.org/10.1080/00268978400101341
  20. Barry, N. J.; Fletcher, I. W.; Whitehead, J. C. J. Phys. Chem. 1986, 90, 491. https://doi.org/10.1021/j100275a028
  21. Dutton, N. J.; Fletcher, I. W.; Whitehead, J. C. J. Phys. Chem. 1985, 89, 569. https://doi.org/10.1021/j100250a005
  22. Duewer, W. H.; Setser, D. W. J. Chem. Phys. 1973, 58, 2310. https://doi.org/10.1063/1.1679506
  23. Park, C. R.; White, G. D.; Wiesenfeld, J. R. J. Phys. Chem. 1988, 92, 152. https://doi.org/10.1021/j100312a033
  24. Luntz, A. C.; Schinke, R.; Lester, Jr., W. A.; Gunthard, Hs. H. J. Chem. Phys. 1979, 70, 5908. https://doi.org/10.1063/1.437421
  25. Saunders, N. D.; Butler, J. E.;McDonald, J. R. J. Chem. Phys. 1980, 73, 5381. https://doi.org/10.1063/1.439927
  26. Smith, G. K.;Butler, J. E. J. Chem. Phys. 1980, 73, 2243. https://doi.org/10.1063/1.440420
  27. Luntz, A. C. J. Chem. Phys. 1980, 73, 1143. https://doi.org/10.1063/1.440266
  28. Butler, J. E.; Jursich, G. M.;Watson, I. A.; Wiesenfeld, J. R. J. Chem. Phys. 1986, 84, 5365. https://doi.org/10.1063/1.449947
  29. Aker, P. M.; Sloan, J. J. J. Chem. Phys. 1986, 85, 1412. https://doi.org/10.1063/1.451230
  30. McKendrick, K. G.; Rakestraw, D. J.; Zare, R. N. J. Phys. Chem. 1988, 92, 5530. https://doi.org/10.1021/j100330a039
  31. Costen, M. L.; Hancock, G.; Ritchie, G. A. D. J. Phys. Chem. A 1999, 103, 10644. https://doi.org/10.1021/jp991989i
  32. Park, C. R.; Wiesenfeld, J. R. J. Phys. Chem. 1989, 93, 1365. https://doi.org/10.1021/j100341a037
  33. Magrini, K. A.; Gebhard, S. C.; Koel, B. E.; Falconer, J. L. Surface Science 1991, 248, 93. https://doi.org/10.1016/0039-6028(91)90064-Y
  34. Krasnova, T. L.; Abramoνa, E. S.; Alekseeν, N. V.; Chernysheν, E. A. Russian Chemical Bulletin 1999, 48, 1960. https://doi.org/10.1007/BF02494755
  35. Ding, L.; Marshell, P. J. Am. Chem. Soc. 1992, 114, 5754. https://doi.org/10.1021/ja00040a041
  36. Busch, G. E.; Wilson, K. R. J. Chem. Phys. 1972, 56, 3626. https://doi.org/10.1063/1.1677740
  37. Luque, J.; Crosley, D. R. LIFBASE: Database and Spectral Simulation Program, Version 1.5; SRI International Report MP 99-009, 1999.
  38. Doncaster, A. M.; Walsh, R. J. Chem. Soc., Faraday Trans. I 1979, 75, 1126. https://doi.org/10.1039/f19797501126
  39. Doncaster, A. M.; Walsh, R. Int. J. Chem. Kinet. 1981, 13, 503. https://doi.org/10.1002/kin.550130508
  40. Walsh, R. Acc. Chem. Res. 1981, 14, 246. https://doi.org/10.1021/ar00068a004
  41. Moor, E. A.; Richards, W. G. Phys. Scr. 1971, 3, 223. https://doi.org/10.1088/0031-8949/3/5/005
  42. Whitehead. J. C. Gen. Discuss., Faraday Discuss. Chem. Soc. 1991, 91, 151.
  43. Bernstein, R. B. Chemical Dynamics via Molecular Beam and Laser Techniques; Oxford Science: 1982; p 196.
  44. Cleveland, C. B.; Jursich, G. M.; Trolier, M.; Wiesenfeld, J. R. J. Chem. Phys. 1987, 86, 3253. https://doi.org/10.1063/1.451984
  45. Bogan, D. J.; Setser, D. W. J. Chem. Phys. 1976, 64, 586. https://doi.org/10.1063/1.432249
  46. Park, C. R.; Wiesenfeld, J. R. J. Chem. Phys. 1991, 95, 8166. https://doi.org/10.1063/1.461296

Cited by

  1. P) Atom over a Temperature Range of 294.7-378.5 K vol.36, pp.10, 2015, https://doi.org/10.1002/bkcs.10494