Browse > Article
http://dx.doi.org/10.5012/bkcs.2009.30.2.429

Internal Energy Distributions of OH Products in the Reaction of O(3PJ) with HSiCl3  

Kwak, Hyon-Tae (Department of Chemistry, Kookmin University)
Ha, Seung-Chul (Kolmar Korea Co.)
Jang, Sung-Woo (Department of Chemistry, Kookmin University)
Kim, Hong-Lae (Department of Chemistry and Institute of Molecular Science and Fusion Technology, Kangwon National University)
Park, Chan-Ryang (Department of Chemistry, Kookmin University)
Publication Information
Abstract
The OH($X^2{\Pi},\;{\nu}$"=0, 1) internal state distributions from the reaction of electronically ground state oxygen atoms with HSi$Cl_3$ were measured using laser-induced fluorescence. The ground-state O$(^3P_J)$ atoms with kinetic energies above the reaction barrier were produced by photolysis of N$O_2$ at 355 nm. The OH product revealed strong vibrational population inversion, P(${\nu}$"=1)/P(${\nu}$"=0) = 4.0 ${\pm}$ 0.6, and rotational distributions in both vibrational states exhibit substantial rotational excitations to the limit of total available energy. However, no preferential populations in either of the two $\Lambda$ doublet states were observed from the micropopulations, which supports a mechanism involving a direct abstraction of hydrogen by the atomic oxygen. It was also found that the collision energy between O and HSi$Cl_3$ is effectively coupled into the excitation of the internal degrees of freedom of the OH product ($$ = 0.62, and $<\;f_{rot}>$ = 0.20). The dynamics appear consistent with expectations for the kinematically constrained reaction which supports the reaction type, heavy + light-heavy $\rightarrow$ heavy-light + heavy (H + LH′ $\rightarrow$ HL + H′). The dynamics of oxygen atom collision with HSi$Cl_3$ are discussed in comparison to those with Si$H_4$.
Keywords
Trichlorosilane; O(($^{3}P_{J}$); LIF; OH; Internal energy distribution;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Busch, G. E.; Wilson, K. R. J. Chem. Phys. 1972, 56, 3626.   DOI
2 Luque, J.; Crosley, D. R. LIFBASE: Database and Spectral Simulation Program, Version 1.5; SRI International Report MP 99-009, 1999.
3 Doncaster, A. M.; Walsh, R. J. Chem. Soc., Faraday Trans. I 1979, 75, 1126.   DOI
4 Doncaster, A. M.; Walsh, R. Int. J. Chem. Kinet. 1981, 13, 503.   DOI
5 Walsh, R. Acc. Chem. Res. 1981, 14, 246.   DOI
6 Moor, E. A.; Richards, W. G. Phys. Scr. 1971, 3, 223.   DOI   ScienceOn
7 Whitehead. J. C. Gen. Discuss., Faraday Discuss. Chem. Soc. 1991, 91, 151.
8 Bernstein, R. B. Chemical Dynamics via Molecular Beam and Laser Techniques; Oxford Science: 1982; p 196.
9 Cleveland, C. B.; Jursich, G. M.; Trolier, M.; Wiesenfeld, J. R. J. Chem. Phys. 1987, 86, 3253.   DOI
10 McKendrick, K. G.; Rakestraw, D. J.; Zare, R. N. J. Phys. Chem. 1988, 92, 5530.   DOI
11 Costen, M. L.; Hancock, G.; Ritchie, G. A. D. J. Phys. Chem. A 1999, 103, 10644.   DOI   ScienceOn
12 Park, C. R.; Wiesenfeld, J. R. J. Phys. Chem. 1989, 93, 1365.   DOI
13 Magrini, K. A.; Gebhard, S. C.; Koel, B. E.; Falconer, J. L. Surface Science 1991, 248, 93.   DOI   ScienceOn
14 Krasnova, T. L.; Abramoνa, E. S.; Alekseeν, N. V.; Chernysheν, E. A. Russian Chemical Bulletin 1999, 48, 1960.   DOI   ScienceOn
15 Ding, L.; Marshell, P. J. Am. Chem. Soc. 1992, 114, 5754.   DOI
16 Dutton, N. J.; Fletcher, I. W.; Whitehead, J. C. Mol. Phys. 1984, 52, 475.   DOI   ScienceOn
17 Bogan, D. J.; Setser, D. W. J. Chem. Phys. 1976, 64, 586.   DOI
18 Park, C. R.; Wiesenfeld, J. R. J. Chem. Phys. 1991, 95, 8166.   DOI
19 Kleinermanns, K.; Luntz, A. C. J. Chem. Phys. 1982, 77, 3533   DOI
20 Kleinermanns, K.; Luntz, A. C. J. Chem. Phys. 1982, 77, 3774.   DOI
21 Kleinermanns, K.; Luntz, A. C. J. Chem. Phys. 1982, 77, 3537.   DOI
22 Barry, N. J.; Fletcher, I. W.; Whitehead, J. C. J. Phys. Chem. 1986, 90, 491.   DOI
23 Dutton, N. J.; Fletcher, I. W.; Whitehead, J. C. J. Phys. Chem. 1985, 89, 569.   DOI
24 Duewer, W. H.; Setser, D. W. J. Chem. Phys. 1973, 58, 2310.   DOI
25 Park, C. R.; White, G. D.; Wiesenfeld, J. R. J. Phys. Chem. 1988, 92, 152.   DOI
26 Luntz, A. C.; Schinke, R.; Lester, Jr., W. A.; Gunthard, Hs. H. J. Chem. Phys. 1979, 70, 5908.   DOI
27 Saunders, N. D.; Butler, J. E.;McDonald, J. R. J. Chem. Phys. 1980, 73, 5381.   DOI
28 Smith, G. K.;Butler, J. E. J. Chem. Phys. 1980, 73, 2243.   DOI
29 Luntz, A. C. J. Chem. Phys. 1980, 73, 1143.   DOI
30 Butler, J. E.; Jursich, G. M.;Watson, I. A.; Wiesenfeld, J. R. J. Chem. Phys. 1986, 84, 5365.   DOI
31 Aker, P. M.; Sloan, J. J. J. Chem. Phys. 1986, 85, 1412.   DOI
32 Garton, D. J.; Minton, T. K. J. Phys. Chem. A 2003, 107, 4583.   DOI   ScienceOn
33 Andresen, P.; Luntz, A. C. J. Chem. Phys. 1980, 72, 5842.   DOI
34 Luntz, A. C.; Andresen, P. J. Chem. Phys. 1980, 72, 5851.   DOI
35 Huie, R. E.; Herron, J. T. Prog. React. Kinet. 1975, 8, 1.
36 Zhang, Q.; Gu, Y.; Wang, S. J. Chem. Phys. 2003, 118, 633   DOI   ScienceOn
37 Zhang, Q. Z.; Wang, C. S.; Wang, S. K.; Gu, Y. S. Chinese Chemical Letters 2002, 13, 662.
38 Huynh, L. K.; Zhang, S.;Truong, T. N. Combustion and Flame 2008, 152, 177   DOI   ScienceOn
39 Nam, M. J.; Youn, S. E.; Li., L.; Choi, J. H. J. Chem. Phys. 2005, 123, 211105.   DOI   ScienceOn
40 Balucani, N.; Stranges, D.; Casavecchia, P.; Volpi, G. G. J. Chem. Phys. 2004, 120, 9571.   DOI   ScienceOn
41 Troya, D.;García-Molina, E. J. Phys. Chem. A 2005, 109, 3015.   DOI   ScienceOn
42 Capozza, G.; Segoloni, E.; Leonori, F.; Volpi, G. G.;Casavecchia, P. J. Chem. Phys. 2004, 120, 4557.   DOI   ScienceOn
43 Rand, R. J. J. Vac. Sci. Technol. 1979, 16, 420.   DOI   ScienceOn
44 Boyer, P.K.; Roche, G. A.; Ritchie, W. H.; Collins, G. J. Appl. Phys. Lett. 1982, 40, 716.   DOI
45 Chen, J. Y.; Henderson, R. C.; Hall, J. T.;Peters, J. W. J. Electrochem. Soc. 1984, 131, 2146.   DOI   ScienceOn
46 Herron, J. T.; Huie, R. E. J. Phys. Chem. Ref. Data 1974, 2, 467.   DOI