• Title/Summary/Keyword: rotational accuracy

Search Result 277, Processing Time 0.022 seconds

A Study on Enhancement of the Position Accuracy of a Linear Motor (리니어 모터의 위치 정밀도 향상에 관한 연구)

  • 민경석;오준모;최우천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1828-1831
    • /
    • 2003
  • There are various sources causing a position error in a linear motor. This paper focuses on error sources from rotational motions of a table and friction. Rotational errors occur due to imperfections during manufacturing and/or assembly of guide ways, and cause a position error at locations of interest. Friction is another factor deteriorating the position error due to its highly nonlinear behavior. The position error of the linear motor was about 20∼30$\mu\textrm{m}$. After compensating the position errors due to rotational error motions and friction. the remaining errors become about 6~8$\mu\textrm{m}$ and 2~3$\mu\textrm{m}$, respectively. It is shown that the positional accuracy of a linear can be greatly improved by compensating the two error sources.

  • PDF

Development of a high precision CNC lathe for mirror surface machining (경면가공용 고정밀 CNC 선반 개발)

  • 박청홍;이후상;신영재;이군석;김춘배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.82-88
    • /
    • 1997
  • In this paper, the development of a precision CNC lathe prototype for mirror surface machining is presented. To obtain high precision machining accuracy, a hydrostatically supported precision spindle and a sliding guideway with turcite pad are adopted as the motion elements. The machining accuracy of the prototype machine, and the motional accuracy of its motion elements are tested and evaluated to confirm the validity of the application of these elements on the prototype. The hydrostatic spindle shows 0.09 .mu. m of rotational accuracy and the guideway shows about 0.8 .mu. m/170mm of horizontal straightness. The sur- face roughness of cupper and aluminium cylinder machined by the prototype machine with diamond tool are 0.07 .mu. m and 0.10 .mu. m Rmax respectively. From these results, it is verified that the prototype lathe is avail- able for high precision machining.

  • PDF

High Precision Measurement of Rotational Accuracy (회전정밀도의 고정밀 측정기술)

  • Wei Gao
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.7-13
    • /
    • 2004
  • 초정밀 공작기계의 기능은 초정밀 운동에 의해 대부분 지배된다. 이러한 운동을 생성하는 고정밀 베어링의 운동정밀도는 이미 나노미터 레벨에 도달하고 있으며, 이러한 운동정밀도를 나노미터 레벨의 정밀도로 측정하는 것(정밀나노계측)이 중요한 과제가 되고 있다. 예를 들어, 초정밀선반 등에 있어서, 공기베어링을 대표로 하는 높은 회전정밀도를 갖는 회전축(주축)이 사용되고 있으며, 따라서 이러한 고정밀 주축의 회전정밀도를 나노미터 레벨의 정밀도로 평가하는 기술은 매우 중요하다. (중략)

A Study on the Rotation Accuracy According to Unbalance Variation of High Precision Spindle Unit for Machine Tool (고정밀 회전체의 불평형 변동에 따른 회전정밀도 영향에 관한 연구)

  • Kim, Sang-Hwa;Kim, Byung-Ha;Jin, Yong-Gyoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.174-181
    • /
    • 2012
  • The spindle unit is a core part in high precision machine tool. Rotation accuracy of spindle unit is needed for high dignity cutting and improving the performance of machine tool. However, there are many factors to effect to rotational error motion(rotation accuracy). This study studied how rotational error motion is variation when unbalance amount is variation. Rotation accuracy of initial spindle unit is decided depending on parts and assembly such as bearing. When it is rotation, vibration and noise is appeared depending on volume of unbalance amount, so it works to decrease unbalance amount. The purpose of the study tests that unbalance amount how much effects to initial rotation condition. The result of the study shows that accuracy of parts and assembly is highly necessary to reach high rotation accuracy and unbalance amount hardly effects to initial rotation accuracy. However, it shorten spindle's life because vibration and noise is increasing by increasing unbalance amount and we can expect situation that rotation accuracy is falling by long time operation.

Rotational Characteristics of High Precision Spindle Unit with Ball-Hydrostatic Bearing (볼-유정압 복합베어링을 갖는 고정밀 주축의 회전특성에 관한 연구)

  • 이찬홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.663-667
    • /
    • 2000
  • The spindle unit is core parts in high precision machine tools. Diverse static and dynamic charateristics of spindle unit are needed for special purpose of machine tools. Specially, high damping ability may be very useful to high precision and high speed spindle unit. But commercial bearing system has very low damping value and high stiffness. In this paper, the combined bearing system with ball-hydrostatic bearing is suggested for high damping spindle unit. The suggested bearing system has 30% damping ability more than general ball bearing's. The average rotational accuracy of spindle with combined bearing in working speed is 24% better than with ball bearing. The unbalance rotating experiment in spindle show that rotating error with combined bearing is only half value of with ball bearing.

  • PDF

Development of the Measuring System of the Rotational Accuracy of main Spindles (주축의 회전정도 측정시스템의 개발)

  • Sin, Yeong-Jae;Park, Jong-Gwon;Lee, Hu-Sang
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.21-26
    • /
    • 1990
  • In order to satisfy the industrial requirements to measure the rotational error motion of main spindles and to find out the source of the error motion, some measuring systems were made. Their measuring principle are based on the 3-point roundness measurement. In these measuring systems, the measurements are processed by digital calculation technique and the form error and the rotational error motion of main spindles are spearated. In the present paper, the principle of 3-point metnod is introduced and some application examples are shown.

  • PDF

A 3D co-rotational beam element for steel and RC framed structures

  • Long, Xu;Tan, Kang Hai;Lee, Chi King
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.587-613
    • /
    • 2013
  • A 3-node 3D co-rotational beam element using vectorial rotational variables is employed to consider the geometric nonlinearity in 3D space. To account for shape versatility and reinforced concrete cross-sections, fibre model has been derived and conducted. Numerical integration over the cross-section is performed, considering both normal and shear stresses. In addition, the derivations associated with material nonlinearity are given in terms of elasto-plastic incremental stress-strain relationship for both steel and concrete. Steel reinforcement is treated as elasto-plastic material with Von Mises yield criterion. Compressive concrete behaviour is described by Modified Kent and Park model, while tensile stiffening effect is taken into account as well. Through several numerical examples, it is shown that the proposed 3D co-rotational beam element with fibre model can be used to simulate steel and reinforced concrete framed structures with satisfactory accuracy and efficiency.

Runout Control of a Magnetically Suspended Grinding Spindle (자기베어링으로 지지된 연삭 스핀들의 런아웃 제어)

  • 노승국;경진호;박종권;최언돈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1011-1015
    • /
    • 2000
  • In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. The adaptive feedforward method based on LMS algorithm is discussed to compensate output and input disturbances, and investigated its effectiveness by numerical simulation. The feedforward control reduced external excitation and rotational error for specified frequency. The interpolation method using impulse function for cancelling the electrical 'uncut is studied. These methods show their effectiveness for the rotational accuracy of the improving magnetic bearing spindle through some simulation results of the rotational error decreased by them.

  • PDF

3D FACE RECONSTRUCTION FROM ROTATIONAL MOTION

  • Sugaya, Yoshiko;Ando, Shingo;Suzuki, Akira;Koike, Hideki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.714-718
    • /
    • 2009
  • 3D reconstruction of a human face from an image sequence remains an important problem in computer vision. We propose a method, based on a factorization algorithm, that reconstructs a 3D face model from short image sequences exhibiting rotational motion. Factorization algorithms can recover structure and motion simultaneously from one image sequence, but they usually require that all feature points be well tracked. Under rotational motion, however, feature tracking often fails due to occlusion and frame out of features. Additionally, the paucity of images may make feature tracking more difficult or decrease reconstruction accuracy. The proposed 3D reconstruction approach can handle short image sequences exhibiting rotational motion wherein feature points are likely to be missing. We implement the proposal as a reconstruction method; it employs image sequence division and a feature tracking method that uses Active Appearance Models to avoid the failure of feature tracking. Experiments conducted on an image sequence of a human face demonstrate the effectiveness of the proposed method.

  • PDF

Accuracy Evaluation of a Non-Contact Rotational Torque Measurement System by Using Telemeter (원격전송장치를 이용한 비접촉식 회전 토크 측정장치의 정확도 평가)

  • Kim, G.S.;Joo, J.W.;Kwon, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • This paper presents manufacturing and evaluation of a non-contact rotational torque measurement system which consists of torque cell, telemeter system, transmitter and receiver coil, transmitter, receiver and telemeter indicator. Static calibration test results show that the system has a maximum uncertaintry of 05% or less. A standar calibration system for rotational torque is used to evaluate the measurement system, As a result, the maximum uncertainty for measuring rotational torque by this system is 2% or less. We may conclude that the measurement system is sufficient to measure rotational torque of shaft in industry.

  • PDF