• Title/Summary/Keyword: rotational

Search Result 3,863, Processing Time 0.035 seconds

Robust 3-D Motion Estimation Based on Stereo Vision and Kalman Filtering (스테레오 시각과 Kalman 필터링을 이용한 강인한 3차원 운동추정)

  • 계영철
    • Journal of Broadcast Engineering
    • /
    • v.1 no.2
    • /
    • pp.176-187
    • /
    • 1996
  • This paper deals with the accurate estimation of 3- D pose (position and orientation) of a moving object with reference to the world frame (or robot base frame), based on a sequence of stereo images taken by cameras mounted on the end - effector of a robot manipulator. This work is an extension of the previous work[1]. Emphasis is given to the 3-D pose estimation relative to the world (or robot base) frame under the presence of not only the measurement noise in 2 - D images[ 1] but also the camera position errors due to the random noise involved in joint angles of a robot manipulator. To this end, a new set of discrete linear Kalman filter equations is derived, based on the following: 1) the orientation error of the object frame due to measurement noise in 2 - D images is modeled with reference to the camera frame by analyzing the noise propagation through 3- D reconstruction; 2) an extended Jacobian matrix is formulated by combining the result of 1) and the orientation error of the end-effector frame due to joint angle errors through robot differential kinematics; and 3) the rotational motion of an object, which is nonlinear in nature, is linearized based on quaternions. Motion parameters are computed from the estimated quaternions based on the iterated least-squares method. Simulation results show the significant reduction of estimation errors and also demonstrate an accurate convergence of the actual motion parameters to the true values.

  • PDF

Enhancing Robustness of Floor Vibration Control by Using Asymmetric Tuned Mass Damper (비대칭 동조질량감쇠기를 활용한 바닥진동제어의 강건성 향상 방안)

  • Ko, A Ra;Lee, Cheol Ho;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.177-189
    • /
    • 2014
  • When floor vibration problems occur in existing buildings, TMD (tuned mass damper) can be a viable alternative to resolving the problem. Only when TMD has been exactly tuned to the natural frequency of the floor, it can control the vibration as intended in design. However, TMD gets inefficient in the situation where the natural frequency changes as a result of the uncontrollable variation of the floor mass weight. This physical phenomenon is often called as TMD-off-tuning. This study proposes asymmetric TMD for enhancing the robustness of floor vibration control against uncertain natural frequencies. The proposed TMD features two asymmetric linear springs such that the floor vibrational energy can be dissipated through both the translational and rotational motion. An easy-to-use graphical optimization method was developed in this study. The asymmetric TMD proposed outperformed in vibration control by 28% compared to that of conventional TMD. The robustness of asymmetric TMD of this study was two times higher than that of conventional TMD.

Finite Element Vibration Analysis of Laminated Composite Folded Structures With a Channel Section using a High-order Shear deformation Plate Theory (고차전단변형 판이론을 이용한 채널단면을 갖는 복합적층 절판 구조물의 유한요소 진동 해석)

  • 유용민;장석윤;이상열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2004
  • This study deals with free vibrations of laminated composite structures with a channel section using finite element method. In this paper, the mixed finite element method using Lagrangian and Hermite interpolation functions is adopted and a high-order plate theory is used to analyze laminated composite non-prismatic folded plates with a channel section more accurately for free vibration. The theory accounts for parabolic distribution of the transverse shear stress and requires no shear correction factors supposed in the first-order plate theory. An 32×32 matrix is assembled to transform the system element matrices from the local to global coordinates using a coordinate transformation matrix, in which an eighth drilling degree of freedom (DOF) per node is appended to the existing 7-DOF system. The results in this study are compared with those of available literatures for the conventional and first-order plate theory. Sample studies are carried out for various layup configurations and length-thickness ratio, and geometric shapes of plates. The significance of the high-order plate theory in analyzing complex composite structures with a channel section is enunciated in this paper.

RELATIONSHIP BETWEEN MANDIBULAR MOVEMENTS AT INCISAL AREA AND CONDYLAR MOVEMENTS (전치부 하악운동양태와 과두운동 간의 관계)

  • Kang, Seok-Ku;Han, Kyung-Soo;Jin, Tai-Ho;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.15-29
    • /
    • 1997
  • The author performed this study to investige the relationship between condylar movements recorded with Pantronic and mandibular movements at incisal area recorded with BioEGN. For this study 24 patients with Temporomandibular disorders(TMDs) and 30 dental students without any masticatory symptoms were selected as patients group and control group, respectively. The items recorded with Pantronic(Denar Corp., USA) were immediate side-shift, orbiting path, protrusive path, and PRI. BioEGN(Bioelectric-gnathography, Bioresearch Inc., USA) were sued to measure the amount of mandibular torque movement in frontal and horizontal plane and also the distance of mandibular translation at incisal area. Amount of mandibular rotational torque movement was analyzed by angle and difference between both condyles in frontal and horizontal plane. The collected data were processed with SAS program and conclusion were as follows : 1. Mean value of items recorded with Pantronic were not significantly differed between patients group and control group except the item of pantographic reproducibility index(PRI). The value of PRI was 39.5 in patients group, and 29.5 in control group. 2. The amount of mandibular torque movement was not differed tin early protrusive and early left excursion between patients group and control group, but in early right excursion, patients group showed more value than control group did. 3. The distance on sagittal plane in early eccentric movements were longer in patients group than those in control group, but the distance of maximal eccentric movements were not significantly differed between patients group and control group. 4. Items which showed significant correlation with PRI were progressive side-shift, and horizontal torque movement in early protrusion and right excursion. 5. The angle of protrusive path of affected side was greater than of non-affected side in unilaterally affected patients, but the protrusive angle of preferred chewing side was not differed from that of contralateral side in control group. 6. The amount of torque movement in early protrusion and right excursion were greater in patients with coincidence of affected side and preferred chewing side than in patients without coincidence.

  • PDF

Surgical Planning in Deformity Correction Osteotomies using Forward Kinematics and Inverse Kinematics (정기구학 및 역기구학을이용한하지 교정절골술 계획 생성)

  • Jeong, Jiwon;Lee, Seung Yeol;Youn, Kibeom;Park, Moon Seok;Lee, Jehee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Patients with cerebral palsy or arthritis have deformities in lower limb which cause unstable gait or posture and pains. Surgeons perform a deformity correction osteotomy with surgical plan. But sometimes they find the unexpected angular or rotational deformation after surgery. The problems are that there is no method to predict the result of a surgical plan and also there are so many factors to must consider in surgical planning step such as clinical measurements, rotation angle, wedge angle, morphology of lower limb, etc. This paper presents new methods for planning the deformity correction osteotomy efficiently. There are two approaches based on the 3D mesh model and the accurate assessment of the patient's lower limb. One is the manual pre-simulation of surgery using forward kinematics. And the other is the automatic surgical planning using inverse kinematics and nonlinear optimization. Using these methods, we can predict and verify the results of various surgical treatments and also we can find a more effective surgical plan easily compared to conventional methods.

Ripple Compensation of Air Bearing Stage upon Gantry Control of Yaw motion (요 모션 갠트리 제어 시 공기베어링 스테이지의 리플 보상)

  • Ahn, Dahoon;Lee, Hakjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.554-560
    • /
    • 2020
  • In the manufacturing process of flat panel displays, a high-precision planar motion stage is used to position a specimen. Stages of this type typically use frictionless linear motors and air bearings, and laser interferometers. Real-time dynamic correction of the yaw motion error is very important because the inevitable yaw motion error of the stage means a change in the specimen orientation. Gantry control is generally used to compensate for yaw motion errors. Flexure units that allow rotational motion are applied to the stage to apply this method to a stage using an air-bearing guide. This paper proposes a method to improve the constant speed motion performance of a H-type XY stage equipped with air bearing and flexure units. When applying the gantry control to the stage, including the flexure units, the cause of the mutual ripple generated from the linear motors is analyzed, and adaptive learning control is proposed to compensate for the mutual ripple. A simulation was performed to verify the proposed method. The speed ripple was reduced to approximately the 22 % level. The ripple reduction was verified by simulating the stage state where yaw motion error occurs.

Nonvisibility and robustness evaluation of image watermarking mixed Key and Logo method (키와 로고 방식을 혼합한 이미지 워터마킹의 비가시성과 강인성 평가)

  • Park, Young;Song, Hag-Hyun;Choi, Se-Ha;Lee, Myong-Kil;Kim, Yoon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.3
    • /
    • pp.464-469
    • /
    • 2002
  • In this research, nonvisibility and robustness of image watermarking mixed Key and Logo method were evaluated. The role of the Key was performed by a personal ID of a copyrighter and the logo images were used as the watermark. The standard image of Lena was used for experimental image and binary images of `Park'with size 32${\times}$32 and 64${\times}$64 were used for the watermark, respectively In order to evaluate nonvisibility of the proposed watermarking scheme, PSNR(Peak Signal to Noise Ratio) of the watermarked image was obtained and for robustness reconstructive rates of the reconstructed watermark were obtained from the watermarked image with image transformation of JPEG lossy compression. The experimental results show that nonvisibility is excellent as PSNR of the watermarked image is 93.75dB and the reconstructive rates of the case of 322${\times}$32 watermark was better than the case of the 64${\times}$64 watermark; average 5.9%, 13.9%, 6.5%, and 4.2% in the case of scale-down rates, rotational rates, impulse noise power density, and JPEG lossy compression rates, respectively.

Clinical Outcome and Arthroscopic Evaluation of Double-Bundle Anterior Cruciate Ligament Reconstruction (이중 다발 전방십자인대 재건술의 임상적 결과 및 이차적 관절경 소견)

  • Song, Eun-Kyoo;Seon, Jong-Keun;Lee, Kyoung-Jai;Kim, Hyung-Soon
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • Purpose: The aim of this study was to evaluate short-term clinical results and second-look arthroscopic findings after double-bundle anterior cruciate ligament (DB ACL) reconstruction. Materials and Methods: Forty-nine patients, who were followed up for at least 24 months after DB ACL reconstruction, were included. Clinical results, such as, Lysholm knee and Tegner activity scores, and manual laxity and instrumented anterior laxity test results were evaluated. In fifteen patients (15 knees), second-look arthroscopy with staple removal was performed. At second-look arthroscopy, the authors assessed about reconstructed ACL rupture, subjective graft tension and extent of synovial coverage. Results: Lysholm knee scores significantly improved from 67.4 preoperatively to 96.1 at last follow-up (p<0.01). Tegner activity scale improved from 2.0 to 6.1. The Lachman test, at last follow-up, showed normal laxity in 39 (of 49) patients, and the pivot-shift test showed normal laxity in 36 (of 49) patients. Mean side-to-side differences improved significantly from 10.8 mm to 3.3 mm (p<0.01). Second-look arthroscopic findings showed that all patients had a normal or a near normal anteromedial bundle. However, 8 patients (53.3%) were found to have partial or complete posterolateral bundle rupture. Conclusion: Even though double-bundle ACL reconstruction was clinically effective means of restoring knee rotational and anteroposterior stabilities, there were some ruptured posterolateral bundles observed in cases under arthroscopy after double-bundle ACL reconstruction.

  • PDF

Stability Analysis of Nonhomogeneous Slopes by Log -spiral Failure Surface (이질토층사면의 대수누선파양에 대한 안정해석)

  • Kim, Yeong-Su;Seo, In-Seok;Baek, Yeong-Sik
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.41-54
    • /
    • 1993
  • This paper presents the two and three -dimensional stability analysis of nonhom- ogeneous, c-o soil slopes. Potential failure surface is assumed as a logspiral curve refracted in boundaries of layers. In 3-D analysis, rotational soil mass is assumed with a cylindroid central part terminated with plane ends. Seismic force is considered by sesmic intensity. The program developed in this study is compared with the program PCSTABLS. The ratio of three-dimensional minimum factor of safety to two-dimensional case is examined and factor of safety changes are showed for the ratio of cylindroid length to slope height and numbers of slice. On such bases the following conclusions may by made : (1) The program developed in this program is less conservative than the program PCSTABLS. (2) The value of F2 of this study shows the larger differences than that of PCSTABLS with increasing friction angle (3) Factors of safety computed for 3-D geometry differ considerablely from ordinary 2-D factors of safety. Since Fb/F2 exceeds unity, three -dimensional effects tend to increase the factor of safety. (4) As the ratio of three - dimensional failure width of slope height, b/H increase, the value of Fb/Ff decreases and approaches 1.0 when bye is 14. (5) In calculating the factor of safety using the developed program the number of slices is suitable with the ranges of 30-40

  • PDF

Structural Analysis of a Suction Pad for a Removable Bike Carrier using Computational and Experimental Methods (탈착식 자전거 캐리어용 흡착 패드의 실험 및 전산적 방법을 활용한 구조해석)

  • Suh, Yeong Sung;Lim, Geun Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.622-628
    • /
    • 2016
  • As the suction pad-supporting bike carrier attached to a car may be subject to an excessive dynamic load due to random vibrations and centrifugal forces during driving, its structural safety is of great concern. To examine this, the finite-element method with a fluid-structure interaction should be used because the pressure on the pad bottom is changed in real time according to the fluctuations of the force or the moment applied on the pad. This method, however, has high computing costs in terms of modeling efforts and software expense. Moreover, the accuracy of computation is not easily guaranteed. Therefore, a new method combining the experiment and computation is proposed in this paper: the bottom pressure and contact area of the pad under varying loads was measured in real time and the acquired data are then used in the nonlinear elastic finite-element calculations. The computational and experimental results obtained with the product under development showed that the safety margin of the pad under the axial loading is relatively sufficient, whereas with an excessive rotational loading, the pad is vulnerable to separation or a local surface damage; hence, the safety margin may not be secured. The predicted contact behavior under the variation of the magnitude and type of the loading were in good agreement with the one from the experiment. The proposed analysis method in this study could be used in the design of similar vacuum pad systems.