• Title/Summary/Keyword: rotation capacity

Search Result 306, Processing Time 0.022 seconds

Seismic Design of Mid-to-Low Rise Steel Moment Frames Based on Available Connection Rotation Capacity (접합부 회전능력에 기초한 중/저층 철골모멘트골조의 내진설계)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.715-723
    • /
    • 2007
  • A displacement-based seismic design procedure was proposed for mid-to-low-rise steel moment frames. The proposed method was totally different from the current R-factor approach in that it directly uses available connection rotation capacity as a primary design variable. To this end, the relationship between available connection rotation capacity and seismic response modification (R factor) was established first; this relationship has been a missing link in current ductility-based design practice. A step-by-step displacement-based iterative design procedure was then proposed and verified using inelastic dynamic analysis.

Seismic Performance Evaluation According to Rotation Capacity of Connections for Intermediate Steel Moment Frames - II. Cause Evaluation and Alternative (접합부 회전성능에 따른 중간 철골 모멘트 골조의 내진 성능 평가 - II 원인 평가 및 대안)

  • Moon, Ki Hoon;Han, Sang Whan;Ha, Seung Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.105-115
    • /
    • 2014
  • This paper is the sequel of a companion paper (I. Performance Evaluation) evaluating the relation between the seismic performance of steel intermediate moment frames (IMFs) and the rotation capacity of connections. The evaluation revealed that the seismic performance of IMFs having the required minimum rotation capacity suggested in the current standards did not meet the seismic performance criteria presented in FEMA 695. Therefore, thepresent study evaluates the causes of the vulnerable seismic performance for steel IMFs and proposes alternatives to satisfy the seismic performance suggested in FEMA 695. To that goal, the results of nonlinear analysis, which are the pushover analysis and the incremental dynamic analysis, are examined and evaluated. As a result, high-rise IMF systems are seen to have the lower collapse margin ratio after connection fracture than row-rise IMF systems and, the actual response isfound to compared tothedesign drift ratio acting on design load design. Finally, the minimum design load values are proposed to meet the seismic performance suggested in FEMA 695 for IMF systems having vulnerable seismic performance.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Parametric Studies (비탄성 국부좌굴을 고려한 철골 모멘트 접합부의 회전능력에 대한 변수 연구)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.625-632
    • /
    • 2008
  • In the companion paper (Model Development), an analytical model estimating the available rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames was proposed. In this paper, two limit states were considered as the connection rotation capacity criteria: (i) strength degradation failure when the strength falls below the nominal plastic strength due to the local buckling of the beam's cross-section and (ii) low-cycle fatigue fracture caused by plastic strain accumulation at the buckled flange after only a few cycles of high-amplitude deformation. A series of analyses are conducted using the proposed model with two limit states under monotonic and cyclic loadings. Beam section geometric parameters, such as flange and web slenderness ratios, varied over the practical ranges of H-shapedbeams to observe their effect on the rotation capacity and low-cycle fatigue life of pre-qualified WUF-W connections.

Analytical model for the throughput capacity of single carousel (단일 캐러젤의 처리능력에 관한 분석적 모형)

  • 임석철
    • Korean Management Science Review
    • /
    • v.11 no.1
    • /
    • pp.39-50
    • /
    • 1994
  • Carousel systems can be classified into unidirectional and bidirectional carousel, depending on the hardware structure. Bidirectional carousels again can be classified into reversible and irreversible carousel, depending on whether the reversal of direction is allowed or not during the process of an order. In this study, single carousel served by one operator is considered. Analytical models for the rotation distance to process an order of size are developed for unidirectional and irreversible bidirectional cases. For reversible bidirectional and Nearest Neighbor Heuristic cases, simulation results of the average rotation distance are presented. Since the throughput capacity of carousel systems also depends upon the picking time of the operator; order size; and the rotation speed of carousel, the model considers the above three factors to express the throughput capacity of single carousel systems.

  • PDF

Basic Study on Quality Evaluation Technique for Peeled Garlics(I) -Rotation sytem for vision-based garlic sorter- (박피 마늘의 품위판정 기술개발에 관한 기초연구(I) -영상식 마늘 선별기용 반전장치 개발-)

  • 이종환;이성범;안청운
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.271-278
    • /
    • 2001
  • Many workers in the garlic peeling factory are separating the sound peeled garlics from the unpeeled and defective ones in a manual way. In order to reduce the seasonal labor requirement and operating cost, the mechanized garlic sorting system such as the vision-based garlic sorter should be developed. This study was conducted as one of basic studies on developing quality evaluation technique for peeled garlics, especially to developed the system for acquiring the whole surface images of garlics with a CCD camera. The following results were obtained from this study. 1. The belt-type garlic rotation system was devised to apply for the vision-based garlic sorter and was tested to decide the criteria of design and optimum conveying speed. 2. To evaluate the performance of the developed garlic rotation system, feeding rate and rotating rate were measured under the conditions of four experimental factors such as the inclined angle of rotating belt, the inclined angle of feeding belt, the height of plate arrays on feeding belt and the conveying speed of belts. And the capacity of the system according to mixture ratios of peeled garlics and unpeeled garlics was analyzed as a feasibility test. 3. For the inclined angle of rotating belt 20°and height of plate array on feeding belt 22㎜, the maximum rotating rate for garlic samples including unpeeled ones was 81.1% at the conveying speed of 4.2 garlic/sec. And under these condition, the maximum feeding rate was 85% at the inclined angle of feeding belt 6.5°. 4. The capacity of the developed garlic rotation system was almost constant regardless of mixture ratio of peeled garlics and unpeeled garlics and its range was 2.95∼3.92 garlic/sec. At the conveying speed of 4.2 garlic/sec, the capacity of the garlic rotation system was calculated ad 58∼64 kg/hr. 5. To improve performance of the garlic rotation system, it is recommended to develop a device to slide garlics into feeding belt.

  • PDF

Estimation of Rotation Point of Laterally Loaded Piles through Laboratory Test (실내모형 실험을 통한 수평재하말뚝의 회전점 산정)

  • Hwang, Sung-Wook;Hong, Jung-Moo;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.744-747
    • /
    • 2008
  • In this study, to analyze the rotation point of piles, the laboratory lateral load test was performed. The lateral load bearing capacity is one of the important factor related with structure failure directly. Analyzing rotation point in different soil condition, relative density and stress condition, leads more accurate ultimate lateral bearing capacity. Also, reliability was analyzed about established 예측식 as applying to tapered pile. As a result, the established prediction was suitable to cylider pile, but not to tapered pile.

  • PDF

Analytical investigation of the cyclic behaviour of I-shaped steel beam with reinforced web using bonded CFRP

  • Mohabeddine, Anis I.;Eshaghi, Cyrus;Correia, Jose A.F.O.;Castro, Jose M.
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.447-456
    • /
    • 2022
  • Recent experimental studies showed that deep steel I-shaped profiles classified as high ductility class sections in seismic design international codes exhibit low deformation capacity when subjected to cyclic loading. This paper presents an innovative retrofit solution to increase the rotation capacity of beams using bonded carbon fiber reinforced polymers (CFRP) patches validated with advanced finite element analysis. This investigation focuses on the flexural cyclic behaviour of I-shaped hot rolled steel deep section used as beams in moment-resisting frames (MRF) retrofitted with CFRP patches on the web. The main goal of this CFRP reinforcement is to increase the rotation capacity of the member without increasing the overstrength in order to avoid compromising the strong column-weak beam condition in MRF. A finite element model that simulates the cyclic plasticity behavior of the steel and the damage in the adhesive layer is developed. The damage is modelled using the cohesive zone modelling (CZM) technique that is able to capture the crack initiation and propagation. Details on the modelling techniques including the mesh sensitivity near the fracture zone are presented. The effectiveness of the retrofit solution depends strongly on the selection of the appropriate adhesive. Different adhesive types are investigated where the CZM parameters are calibrated from high fidelity fracture mechanics tests that are thoroughly validated in the literature. This includes a rigid adhesive commonly found in the construction industry and two tough adhesives used in the automotive industry. The results revealed that the CFRP patch can increase the rotation capacity of a steel member considerably when using tough adhesives.

Rotation Point of Laterally Loaded Pile Under Multi Layered Soil (다층지반 하에서 수평하중을 받는 말뚝의 회전점)

  • Kang, Beong-Joon;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.708-712
    • /
    • 2008
  • Piles and pile foundations have been in common use since very early times. Usually function of piles is to carry load to a depth at which adequate support is available. Another important use of piles is to furnish lateral support and nowadays it is getting highlighted due to the wind load, lateral action of earthquake, and so on. After Broms (1964), many researchers have been suggested methods for estimating lateral capacity of pile. But each method assumes different earth pressure distribution and lateral earth pressure coefficient and it gives confusion to pile designers. Lateral earth pressure, essential in lateral capacity estimation, influenced by pile's behavior under lateral load. Prasad and Chari (1999) assumed the rotation point of pile and suggested an equation of ultimate lateral load capacity. In this study, we investigate the depth of rotation point in both homogeneous soil and multi layered soil, and compare to the estimation value by previous research. To model the pile set up in the sand, we use the chamber and small scale steel pile, and rain drop method. Test results show the rotation point is formed where the Prasad and Chari's estimation value, and they also show multi layered condition affects to location of rotation point to be scattered.

  • PDF

PNF Exercise, the Athletic Performances and the Ability of Exercise Capacity in Taekwondo (태권도 경기력 및 운동수행능력과 PNF운동)

  • Heo, Jun-Ho
    • PNF and Movement
    • /
    • v.9 no.2
    • /
    • pp.21-27
    • /
    • 2011
  • Purpose : The purpose of this study was to investigate PNF exercise, the athletic performances and the ability of exercise capacity in Taekwondo. Methods : This is a literature study with books and articles, seminar note and books for PNF international course. Results : The PNF exercise was efficient at improving flexibility and muscle strengthening in Taekwondo athletes. Kinematic characters of Yupchagi and Dollyuchagi in Taekwondo were analogous to Lower extremity Flexion-Abduction-Internal Rotation patterns in PNF, and the kinematic character of Apchagi was to analogous to Lower extremity Flexion-Adduction-External Rotation pattern in PNF. Movements of Upper extremities and Lower extremities during kicking were similar to PNF patterns. The PNF is efficient at improving athletic performances and the ability of exercise capacity in Taekwondo. Conclusion : The result of this study showed that PNF patterns and kicking that is one of the basic movement in Taekwondo have many similarities. With that PNF patterns was the training methods to improve flexibility and muscle strengthening, PNF patterns are considered to improve athletic performances and the ability of exercise capacity in Taekwondo.

Local Buckling and Inelastic Behaviour of 800 MPa High-Strength Steel Beams (800MPa급 고강도강 보 부재의 국부좌굴 및 비탄성 거동)

  • Lee, Cheol-Ho;Han, Kyu-Hong;Kim, Dae-Kyung;Park, Chang-Hee;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.479-490
    • /
    • 2012
  • Flexural tests on full-scale H-shaped beams, built up from high-strength steels (HSB800 and HSA800) with a nominal tensile strength of 800 MPa, was carried out to study the effect of flange slenderness of high-strength steel on flexural strength and rotation capacity. The primary objective was to investigate the appropriateness of extrapolating current stability criteria (originally developed for ordinary steel) to high-strength steel. The performance of high-strength steel specimens was very satisfactory from the strength, but not from the rotation capacity, perspective. The inferior rotation capacity of high-strength steel beams was shown to be directly attributable to the absence of a distinct yield plateau and the high yield ratio of the material. Residual stress measurements reconfirmed that the magnitude of the residual stress is almost independent of the yield stress of the base metal.