• Title/Summary/Keyword: rotating unbalance

Search Result 120, Processing Time 0.028 seconds

On-line Balancing of a Ultra-high speed Rotor with Residual Unbalance (자기베어링을 이용한 잔류질량불균형이 존재하는 초고속 회전체의 온라인 밸런싱)

  • 송상호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.51-57
    • /
    • 1998
  • In order to minimize vibration problems of rotating machinery rotors have been assembled through balancing machines. Since perfect balancing is impossible, residual unbalances cause serious vibration while the rotor is in high speed region. To minimize unbalance effects of magnetic bearing systems (AMB) during rotation on-line balancing methodology was studied. Unbalances were considered as disturbances of the system. The disturbance observer was used to estimate unbalance force from measurable state and input variables. Balancing inputs computed according to LQR and outputs of the observer were applied to eliminate unbalances during high speed rotation of the AMB. the effectiveness of the on-line balancing was verified through numerical simulations.

  • PDF

Optimal Design Analysis of Driving Link-Mechanism and Development of Control Performance Estimation Program for Unbalance Heavy-Load Elevation Driving System; (구동 링크기구 최적설계 분석 및 불균형 대부하 고저 구동/제어 성능추정 프로그램 개발)

  • 최근국;이만형;안태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.614-617
    • /
    • 1995
  • The unbalance heavy-load elevation driving systems are composed of rotating link-mechanism and hydraulic cylinder which actuates elevation and compensates the static unbalance moment of supporting mechanism. Control and compensation of gun driving is very difficult because these mechanism imply highly nonlinearities due to hydraulic fluid characteristics and mechanical rotation of link-mechanism. In this study, through the analysis of manufactured link-mechanism, the optimal link-mechanism design of the elevating system is suggested. Also to estimate the control performance of the unbalance heavy-load elevation servo-control driving system, modeling and simulation of the system are carried out. To prove the reliability of performance estimation program,simulation results are compared with the experimental results. Both results are similar, therefore this program will be helpful to study the control performance improvement of the system.

  • PDF

Correction of Mass Unbalance of a High Precision Rotor (Impact를 이용한 정밀 고속 회전체 불평형 보정)

  • Lee, S.B.;Ihn, Y.S.;Oh, D.H.;Kim, H.Y.;Lee, H.S.;Koo, J.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.720-725
    • /
    • 2007
  • The unbalanced mass of a high precision rotor deteriorates mechanical performance of the rotor. The geometrical center of a rotor generally corresponds to the rotational axis of the rotor. However, this alignment carried out with a stationary rotor does not guarantee the dynamic rotor balance. There have been a number of schemes for the correction of the unbalance published for decades especially in the hard drive industry where the issues are directly affecting manufacturing costs and product performances. Realizing the significance of the problem, the present work tries to refine one of the methods that works by applying external impact during a rotor spins. A systematic way to apply the external impact to a rotating rotor has been introduced to minimize unbalance correction process time.

A Study on the Synchronous Response of General Rotor-Bearing Systems due to Initial Deformation

  • Hong, Seong-Wook;Seo, Yong-Gyu;Park, Jong-Heuck
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1226-1239
    • /
    • 2001
  • Rotating machinery often encounters excessive vibration due to various excitation sources. Among others, the synchronous excitation due to rotating unbalance and initial deformation is acknowledged to be one of the major sources of vibration in rotor-bearing systems. In this paper, a synchronous response analysis method in the presence of the initial deformation is proposed to investigate the peculiar effect of the initial deformation on the response of general flexible rotor-bearing systems with rotational speed dependency and the anisotropy. Experiments are performed and compared with computational results to verify the proposed analysis method. Two numerical examples are also provided to illustrate the characteristics of the synchronous response of general rotor-bearing systems due to the initial deformation.

  • PDF

Deterioration Monitoring Device by Unbalance Current Measurement of Rotating Machines (불평형전류 측정에 의한 회전기 열화감시장치)

  • Park, Chan-Yong;Park, Dae-Won;Rhyu, Keel-Soo;Kil, Gyung-Suk;Lee, Kang-Won
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2035-2039
    • /
    • 2008
  • This paper described an on-line condition monitoring device for rotating machines by measurement of unbalance current due to insulation deterioration. The device consists of a zero-phase current transformer (ZCT), a low-noise amplifying circuit, and a microprocessor unit. The prototype device measures current of $500\;{\mu}A\;{\sim}\;30\;mA$ in frequency ranges from 10 Hz to 3 kHz. An application experiment was carried out on 3-phase induction motors and we could measure current changes caused by a short-circuited turn.

  • PDF

Control of Magnetic Flywheel System by Neuro-Fuzzy Logic (뉴로-퍼지를 이용한 플라이휠 제어에 관한 연구)

  • Yang Won-Seok;Kim Young-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.90-97
    • /
    • 2005
  • Magnetic flywheel system utilizes a magnetic bearing, which is able to support the shaft without mechanical contacts, and also it is able to control rotational vibration. Magnetic flywheel system is composed of position sensors, a digital controller, actuating amplifiers, an electromagnet and a flywheel. This work applies the neuro-fuzzy control algorithm to control the vibration of a magnetic flywheel system. It proposes the design skill of an optimal controller when the system has structured uncertainty and unstructured uncertainty, i.e. it has a difficulty in extracting the exact mathematical model. Inhibitory action of vibration was verified at the specified rotating speed. Unbalance response, a serious problem in rotating machinery, is improved by using a magnetic bearing with neuro-fuzzy algorithm.

A study on the Active Control for Flexible Rotors Using Phase Control Method (위상 조절방법에 의한 유연 회전체의 능동제어에 관한 연구)

  • Lee W.C.;Kim S.W.;Kim J.S.;Park H.O.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.280-283
    • /
    • 2005
  • This study performed by a previous research for the applying expert system to active vibration control algorithm. In order to increase productivity and efficiency, high-speed rotating machines become popular these days. They are likely to vibrate and cause machine failure even though they have small unbalance. Therefore, a high-speed rotating machine needs a balancing technique. ISO 11342 classifies flexible rotors in accordance with their balancing requirements and establishes methods of assessment of residual unbalance. But, even if they finished balancing work, they have harmful effect vibration under the high-speed rotating environment. This vibration effect is very small, but it must be removed for the improvement of the rotor's spin accuracy. This paper introduces a new active control method that remove the exciting force by a phase control. For this method, the high-speed rotating rotor was reconstructed by a flexible rotor model. The forces which excite the rotating system suppose cyclic forces, we obtain the responses by numerical method. And then through the pattern analysis about the vibraton responses, the controler generate the control force with the reverse phase and similar magnitude. This paper suggest an phase control method and shows how to improve the rotating vibration accuracy of the flexible rotor dynamics system using phase control method.

  • PDF

Image recognition technology in rotating machinery fault diagnosis based on artificial immune

  • Zhu, Dachang;Feng, Yanping;Chen, Qiang;Cai, Jinbao
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.389-403
    • /
    • 2010
  • By using image recognition technology, this paper presents a new fault diagnosis method for rotating machinery with artificial immune algorithm. This method focuses on the vibration state parameter image. The main contribution of this paper is as follows: firstly, 3-D spectrum is created with raw vibrating signals. Secondly, feature information in the state parameter image of rotating machinery is extracted by using Wavelet Packet transformation. Finally, artificial immune algorithm is adopted to diagnose rotating machinery fault. On the modeling of 600MW turbine experimental bench, rotor's normal rate, fault of unbalance, misalignment and bearing pedestal looseness are being examined. It's demonstrated from the diagnosis example of rotating machinery that the proposed method can improve the accuracy rate and diagnosis system robust quality effectively.

A new unbalance compensation method for magnetically supported rotor

  • Ishimatsu, Takakazu;Woo, Shao-Ju;Gahler, Conlad;Taguchi, Nobuyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.245-250
    • /
    • 1993
  • In this paper we propose two feedfroward unbalance compensation algorithms, they accommodate changes of rotor dynamics including rotating speed. The first one determine the compensating signals by identifying system dynamics successively. Whereas, the second one is more primitive like PID algorithm without identifying system dynamics.

  • PDF

A Study on Discrete Hidden Markov Model for Vibration Monitoring and Diagnosis of Turbo Machinery (터보회전기기의 진동모니터링 및 진단을 위한 이산 은닉 마르코프 모델에 관한 연구)

  • Lee, Jong-Min;Hwang, Yo-ha;Song, Chang-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.41-49
    • /
    • 2004
  • Condition monitoring is very important in turbo machinery because single failure could cause critical damages to its plant. So, automatic fault recognition has been one of the main research topics in condition monitoring area. We have used a relatively new fault recognition method, Hidden Markov Model(HMM), for mechanical system. It has been widely used in speech recognition, however, its application to fault recognition of mechanical signal has been very limited despite its good potential. In this paper, discrete HMM(DHMM) was used to recognize the faults of rotor system to study its fault recognition ability. We set up a rotor kit under unbalance and oil whirl conditions and sampled vibration signals of two failure conditions. DHMMS of each failure condition were trained using sampled signals. Next, we changed the setup and the rotating speed of the rotor kit. We sampled vibration signals and each DHMM was applied to these sampled data. It was found that DHMMs trained by data of one rotating speed have shown good fault recognition ability in spite of lack of training data, but DHMMs trained by data of four different rotating speeds have shown better robustness.