• 제목/요약/키워드: rotating motion

검색결과 506건 처리시간 0.025초

유체유동을 갖는 회전 외팔 파이프의 동특성에 미치는 끝단질량의 영향 (The Influence of Tip-mass on Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid)

  • 윤한익;최창수;손인수
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1824-1830
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe conveying fluid and the tip mass. The equation of motion is derived by using the Lagrange equation. The influences of the rotating angular velocity and the velocity of fluid flow in a cantilever pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by the numerical method. The effects of a tip mass on the dynamic response of a cantilever pipe are also studied. The tip-amplitude and maximum tip-deflection of each direction are directly proportional to the tip mass of the cantilever pipe in steady state. It identifies that the influence of the fluid velocity and the rotating angular velocity of the cantilever pipe give much variation the bending tip-displacement of steady state and the bending tip-displacement of non-steady state, respectively. The influence of the rotating angular velocity gives much the deflection of axial direction.

회전유동에서의 관성진동 원인규명 (Onset of Inertial Oscillation in a Rotating Flow)

  • 박준상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2536-2539
    • /
    • 2008
  • A study has been made on how to occur inertial oscillations in a rotating flow. The flow is considered to be induced by differentially-rotating top and bottom disks with infinite radius. The top and bottom disks are assumed to be set in motion over a finite initial start-up time duration from initial solid body rotation ($\Omega$) to each finial state, i.e., the top disk is rotating at the angular velocity (${\Omega}+{\Delta}{\Omega}$) and the bottom disk (${\Omega}-{\Delta}{\Omega}$). The system Reynolds number, which is a reciprocal of conventional Ekman number in rotating flows, is very high so that a boundary layer flow near disks is pronounced. From a strict theoretical analysis, it is clearly found the fact that inertial oscillation in a rotating flow is caused by excessive input of torque during start-up phase. Above finding comes from the following physics of theoretical result: in the case of abrupt start-up within very shorter time-duration than spin-up time scale, the inertial oscillation is magnified but it could be completely depressed in the case of mildly accelerated start-up, i.e., start-up process being established over diffusion time scale.

  • PDF

The Effect of Casing Geometry on Rotordynamic Fluid Forces on a Closed Type Centrifugal Impeller in Whirling Motion

  • Richert, Julien;Nishiyama, Yumeto;Hata, Shinichiro;Horiguchi, Hironori;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권2호
    • /
    • pp.217-222
    • /
    • 2011
  • The rotordynamic fluid forces acting on a closed type impeller in whirling motion were measured and the influence of the clearance geometry on the stability of the impeller was examined. At small positive whirling speed, the rotordynamic forces acted as destabilizing forces for all casings. A small clearance between the shroud of the impeller and the casing caused large fluid force, but did not change the destabilizing region. Radial grooves in the clearance were effective for reducing the fluid forces and destabilizing region due to the reduction of the circumferential velocity without the deterioration of the pump performance. A rotating phenomenon like a rotating stall of the impeller occurred at low flow rate and the resonance between it and the whirling motion led to a sudden increase in force at the whirling speed ratio of 0.7.

이동질량을 가진 유체유동 회전 외팔 파이프의 동특성 (Dynamic Behavior of Rotating Cantilever Pipe Conveying Fluid with Moving mass)

  • 손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.308-311
    • /
    • 2005
  • In this paper, we studied about the effects of the rotating cantilever pipe conveying fluid with a moving mass. The influences of a rotating angular velocity, the velocity of fluid flow and moving mass on the dynamic behavior of a cantilever pipe have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cantilever pipe is modeled by the Euler-Bemoulli hew theory. When the velocity of a moving mass is constant, the lateral tip-displacement of a cantilever pipe is proportional to the moving mass and the angular velocity. In the steady state, the lateral tip-displacement of a cantilever pipe is more sensitive to the velocity of fluid than the angular velocity, and the axial deflection of a cantilever, pipe is more sensitive to the effect of a angular velocity.

  • PDF

공진 주파수 영역에서 탄성지지단의 마찰감쇠효과를 고려한 회전 블레이드의 과도응답해석 (Transient Response Analysis of Rotating Blade Considering Friction Damping Effect of Elastically Restrained Root in Resonant Frequency Range)

  • 윤경재
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.100-112
    • /
    • 2003
  • This paper presents the transient response analysis of a rotating blade in resonant frequency range. It is shown that the modeling is considered in elastic foundation and friction damping effect. The equations of motion are derived and transformed into a dimensionless form to investigate general phenomena. Numerical results show that the magnitude of friction damping to reduce maximum transient response in near the critical angular speed. The method can be applied to a number of examples of the practical rotating blade system to minimize transient response in resonant frequency range.

유체유동 회전 외팔 파이프의 안정성 해석 (Stability Analysis of a Rotating Cantilever Pipe Conveying Fluid)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제17권8호
    • /
    • pp.701-707
    • /
    • 2007
  • In this paper the vibration system is composed of a rotating cantilever pipe conveying fluid. The equation of motion is derived by using the Lagrange's equation. Generally, the system of pipe conveying fluid becomes unstable by flutter. Therefore, the influence of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method are studied. The influence of mass ratio, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified. The critical fluid velocity ($u_{cr}$) is proportional to the angular velocity of the cantilever pipe. In this paper Flutter(instability) is always occurred in the second mode of the system.

토크 하중의 변동이 회전원판의 안정성에 미치는 영향 (Influence of Torque Fluctuation on the Stability of a Rotating Disk)

  • 신응수
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.110-116
    • /
    • 2015
  • This study investigates the whirling stability of a rotating shaft-disk system under parametric excitation using periodically varying torque. The equations of motion were derived using a lumped-mass model, and the Floquet method was employed to find the effects of torque fluctuation, internal and external damping, and rotational speed on whirling stability. Results indicated that the effect of torque fluctuation was considerable on the instability around resonance, but minimal on supercritical instability. Stability diagrams were sensitive to the parametric excitation frequency; critical torque decreased upon increasing excitation frequency, with faster response convergence or divergence. In addition, internal and external damping had a considerable effect on unstable regions, and reduced the effects of the parametric excitation frequency on critical torque and speed. Results obtained from the Floquet approach were in good agreement with those obtained by numerical integration, except for some cases with Floquet multipliers very close to unity.

지지부 탄성효과를 고려한 회전 외팔 보의 진동해석 (Vibration Analysis of Rotating Cantilever Beams Considering the Elastic Foundation Effect)

  • 윤경재;유홍희
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.1022-1028
    • /
    • 2000
  • This paper presents a modeling method for the vibration analysis of rotating cantilever beams considering the elastic foundation effect. Mass and stiffness matrices are derided explicitly by considering coupling effect between stretching and bonding motion. Numerical results show that the bending direction elastic foundation stiffness influences the vibration characteristics significantly in practical range of beam configuration. The ranges of elastic foundation stiffness to avoid the dynamic buckling are also presented. The method presented in this paper can be used to predict the variations of natural frequencies of rotating cantilever beams with elastically restrained root.

  • PDF

유체유동 회전 외팔 파이프의 안정성에 미치는 끝단질량의 영향 (Influence of Tip Mass on Stability of a Rotating Cantilever Pipe Conveying Fluid)

  • 손인수;윤한익;김동진
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.976-982
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid and tip mass. The equation of motion is derived by using the Lagrange's equation. The system of pipe conveying fluid becomes unstable by flutter. Therefore, the influence of a rotating angular velocity, mass ratio, the velocity of fluid flow and tip mass on the stability of a cantilever pipe by the numerical method are studied. The critical flow velocity for flutter is proportional to the angular velocity and tip mass of the cantilever pipe. Also, the critical flow velocity and stability maps of the pipe system are obtained by changing the mass ratios.