• Title/Summary/Keyword: rotating motion

Search Result 505, Processing Time 0.023 seconds

Vibration Control of Flexible Robot Manipulator (유연한 로보트 팔의 진동제어)

  • Park, Young-Pil;Ha, Young-Kyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.2
    • /
    • pp.28-38
    • /
    • 1986
  • An analytical and experimental investigation is made to the dynamic responese of a cantilever with a tip mass that models some of the basic phenomena involved in the response of a flexible manipulator with a tip mass on its free end under the given rotating motion. The system equation is derived from the Hamilton's principle on the basis of the Euler-Bernoulli hypothesis and an approximate solution is obtained from model analysis using Galerkin's method for the vibation response of the system subjected to a sudden stop after an impulsive rotation. Experiment was performed to verify the validity of the theoretical analysis. Results are given for the vibration amplitude of the free end with respect to tip mass ratio, non-dimensionalized rotating velocity, rotating angle and non- dimensionalized hub length. The rotating condition to minimize the vibration amplitude of the free end can be determined for the given basic paramenters.

  • PDF

Compensation of the Straightness Measurement Error in the Laser Interferometer (레이저 간섭계의 진직도 측정오차 보상)

  • Khim Gyungho;Keem Tae-Ho;Lee Husang;Kim Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.69-76
    • /
    • 2005
  • The laser interferometer system such as HP5529A is one of the most powerful equipment fur measurement of the straightness error in precision stages. The straightness measurement system, HP5529A is composed of a Wollaston prism and a reflector. In this system, the straightness error is defined as relative lateral motion change between the prism and the reflector and computed from optical path difference of two polarized laser beams between these optics. However, rotating motion of the prism or the reflector used as a moving optic causes unwanted straightness error. In this paper, a compensation method is proposed for removing the unwanted straightness error generated by rotating the moving optic and an experiment is carried out for theoretical verification. The result shows that the unwanted straightness error becomes very large when the reflector is used as the moving optic and the distance between the reflector and the prism is far. Therefore, the prism must be generally used as the moving optic instead of the reflector so as to reduce the measurement error. Nevertheless, the measurement error must be compensated because it's not a negligible error if a rotating angle of the prism is large. In case the reflector must be used as the moving optic, which is unavoidable when the squareness error is measured between two axes, this compensation method can be applied and produces a better result.

Rotating Arm Test for Assessment of an Underwater Hybrid Navigation System for a Semi-Autonomous Underwater Vehicle (반자율무인잠수정의 수중 복합항법 시스템 성능평가를 위한 회전팔 시험)

  • 이종무;이판묵;김시문;홍석원;서재원;성우제
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.73-80
    • /
    • 2003
  • This paper presents considerations on the results of the rotating arm test, which was carried out for assessment of an hybrid navigation system for a semi-autonomous underwater vehicle. The navigation system consists of an inertial measurement unit(IMU), an ultra-short baseline(USBL) acoustic navigation sensor and a doppler velocity log(DVL) accompanying a magnetic compass. A navigational systemmodel is derived to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters are 25 in the order. The extended Kalman filter was used to propagate the error covariance, The rotating arm tests were carried out in the Ocean Engineering Basin of KRISO, to generate circular motion. The hybrid underwater navigation system shows good tracking performance against the circular planar motion. Additionally this paper checked the effects of the sampling ratio of the navigation system and the possibility of the dead reckoning with the DVL and the magnetic compass to estimate the position of the vehicle.

Stability Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (Waviness가 있는 볼베어링으로 지지된 회전계의 안정성 해석)

  • 정성원;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.181-189
    • /
    • 2002
  • This research presents an analytical model to investigate the stability due to the ball bearing waviness in a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time-varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite determinant of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling elements of a ball bearing generates the time-varying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 (i= 1,2,3..).

  • PDF

Vibration Analysis of Pre-twisted Blades with Functionally Graded Material Properties Based on Timoshenko Beam Theory (티모센코 보 이론에 따른 초기 비틀림각을 갖는 경사기능재 블레이드의 진동 해석)

  • Yoo, Hong Hee;Oh, Yutaek
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.285-287
    • /
    • 2014
  • Equations of motion for the vibration analysis of rotating pre-twisted beams with functionally graded material properties are derived in this paper. Based on Timoshenko beam theory, the effects of shear and rotary inertia are considered. The pre-twisted beam has a rectangular cross-section and is mounted on a rotating rigid hub with a setting angle. Functionally graded material (FGM) properties are considered along the height direction of the beam. The equations of stretching and bending motion are derived by Kane's method employing hybrid deformation variables. To validate the derived equations, natural frequencies of a rotating FGM pre-twisted beam are compared to those obtained by a commercial software ANSYS. The effects of the pre-twisted angle, slenderness ratio, hub radius, volume fraction exponent, and angular speed on the modal characteristics of the system are investigated with the proposed model.

  • PDF

Vibration of a rotary FG plate with consideration of thermal and Coriolis effects

  • Ghadiri, Majid;Shafiei, Navvab;Babaei, Ramin
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.197-207
    • /
    • 2017
  • In this paper, Coriolis effect on vibration behavior of a rotating rectangular plate made of functionally graded (FG) materials under thermal loading has been investigated. The material properties of the FG plate are supposed to get changed in parallel with the thickness of the plate and the thermal properties of the material are assumed to be thermo-elastic. In this research, the effect of hub size, rotating speed and setting angle are considered. Governing equation of motion and the associated boundary conditions are obtained by Hamilton's principle. Generalized differential quadrature method (GDQM) is used to solve the governing differential equation with respect to cantilever boundary condition. The results were successfully verified with the published literatures. These results can be useful for designing rotary systems such as turbine blades. In this work, Coriolis and thermal effects are considered for the first time and GDQM method has been used in solving the equations of motion of a rotating FGM plate.

Seismic Anslysis of Rotating Machine-Foundation System (회전기계-기초의 상호작용을 고려한 지진해석)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.1-12
    • /
    • 1998
  • The seismic behaviour of rotating machine-foundation systems subjected to six-component nonstationary earthquake ground accelerations is analyzed. The rotating machine-foundation system is idealized by using discs, rotating shaft, fluid-film journal bearings, pedestals, and space frame foundation. Thus, governing equations of motion for the rotating machine-foundation system are obtained by considering Gyroscopic effect, Coriolis effect, dynamic characteristics of fluid-film journal bearings, and translational and rotational motions of seismic rigid base. The influences due to Gyroscopic effects, Coriolis effects, and rotational motions of seismic base on the overall structural response are demonstrated by a numerical example. The results show that the inclusion of base rotations and Gyroscopic effects contributes significantly to the system response.

  • PDF

Measurement of Developing Turbulent Flows in a Rotating 90 Degree Bend with Square Cross-Section (회전하는 정사각 단면 $90^{\circ}$ 곡덕트 내의 발달하는 난류유동의 측정)

  • Kim, Dong-Chul;Chun, Kun-Ho;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.819-824
    • /
    • 2001
  • Mean velocity and Reynolds stress components of the developing turbulent flows in a rotating 90 degree bend with square cross-section were measured by a hot-wire anemometer. Effects of the centrifugal and Coriolis forces generated by the curvature and rotation of bend on the mean motion and turbulence structures are investigated experimentally. Results show that the Coriolis force associated with the rotation of the bend may act both through the mean motion and turbulent structures, thereby changing the pressure fields, mean and turbulent velocities distributions.

  • PDF

Pin-Boss Bearing Lubrication Analysis of a Diesel Engine Piston Receiving High Combustion Pressure (고 연소압을 받는 디젤엔진 피스톤의 핀-보스 베어링 윤활해석)

  • Chun, Sang-Myung;Ha, Dae-Hong
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.133-139
    • /
    • 2008
  • In recently designed diesel engines, the running conditions for piston pin bearings have become very severe due to combustion pressure and temperature increase. In this paper, it will be investigated the tendency of piston pin rotating motion by calculating the friction coefficient at piston pin bearings, the oil film thickness and the frictional torques induced by hydrodynamic shear stress. Finally, the pressure distributions on the oil film of piston pin bearings will be found by two-dimensional lubrication analysis in order to help the optimum design of the bearings of piston pin. Specially, it is investigated the effects on the film pressure distribution due to the change in maximum combustion pressure.

Contact Model of Partial Rotor Rub (부분회전마멸에서의 접촉모델)

  • 최연선;배철용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.277-282
    • /
    • 2001
  • Partial rotor rub occurs when an obstacle on the stator of a rotating machinery disturbs the free whirling motion of a rotor, which is more common than full annular rub for the cases of rubbing in rotating machinery. The nonlinearity due to the intermittent contacts and friction during partial rotor rub makes the phenomenon complex. The several nonlinear phenomena of superharmonics, subharmonics, and jump phenomenon are demonstrated for the partial rub using an experimental apparatus in this study. A piecewise-linear model and a rebound model using the coefficient of restitution are investigated on the basis of experimental observations in order to adopt as an analytical model of the contact between the rotor and stator during whirling motion. The contact stiffness, coefficient of restitution, and friction coefficient for the contact during partial rub are calculated from the comparison between the numerical simulation and the experimental results. Also, the numerical simulations for the model of partial rub are done for the various system parameters of clearance, contact stiffness, and friction coefficient in order to find the nonlinear behavior of partial rotor rub.

  • PDF