• Title/Summary/Keyword: rotating effect

Search Result 877, Processing Time 0.025 seconds

Study for Visualization of Rotating Sound Source Using Microphone Array (마이크로폰 어레이를 이용한 회전하는 소음원 가시화에 관한 연구)

  • Rhee, Wook;Park, Sung;Lee, Ja-Hyung;Kim, Jai-Moo;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.565-573
    • /
    • 2006
  • Acoustic analysis of a moving sound source required that the measured sound signals be do-Dopplerized and restored as of the original emission signals. The purpose of this research is development of beamforming technique can be applied to the rotor noise source identification. For the do-Dopplerization and reconstruction of emitted sound wave, Forward Propagation Method is applied to the time domain beamforming technique. And validation test were performed using rotating sound source constructed by bended pipe and horn driver. In the validation test using sinusoidal sound wave, sufficient performance of signal processing can be seen, and the effect of measuring duration for accuracy was compared. In the prop-rotor measurements, the acoustic source locations were successfully verified in varying positions for different frequencies and collective pitch angle, in hover condition.

Performance Evaluation of Microchip Removal Device Rotating by Conveyor Belt with Neodymium Permanent Magnet (네오디뮴 영구자석을 이용한 컨베이어벨트 구동형 미세칩 포집장치의 성능 평가)

  • Choi, Sung-Yun;Wang, Jun-hyeong;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.103-109
    • /
    • 2021
  • Fine chips generated by machining have an impact on machine failure and quality of machined products, it is necessary to remove the chips, so the microchip collection and removal device by rotating conveyor belt with neodymium permanent magnets was developed. In this research, to solve the problem for reducing the existing microchips in the tank, a micro-chip removal device by rotating conveyor belt with neodymium permanent magnets developed. In the development of micro-chip removal device, 3D CATIA modeling was used, and the flow analysis and the electromagnetic force analysis were performed with COMSOL Multiphysics program. To evaluate the performance of the prototypes produced, design of experiments (DOE) is used to obtain the effect of neodymium conveyor movement speed on chip removal for the ANOVA analysis of recovered powders. An experiment was conducted to investigate the effect of the conveyor feed rate on the chip removal performance in detail. As a result of the experiment, it was confirmed that the slower the feeding speed of the fine chip removing device, the more efficient the chip removal.

Limit elastic speed analysis of rotating porous annulus functionally graded disks

  • Madan, Royal;Bhowmick, Shubhankar;Hadji, Lazreg;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.375-388
    • /
    • 2022
  • In this work, limit elastic speed analysis of functionally graded porous rotating disks has been reported. The work proposes an effective approach for modeling the mechanical properties of a porous functionally graded rotating disk. Four different types of porosity models namely: uniform, symmetric, inner maximum, and outer maximum distribution are considered. The approach used is the variational principle, and the solution has been achieved using Galerkin's error minimization theory. The study aims to investigate the effect of grading indices, aspect ratio, porosity volume fraction, and porosity types on limit angular speed for uniform and variable disk geometries of constant mass. To validate the current study, finite element analysis has been used, and there is good agreement between the two methods. The study yielded a decrease in limit speed as grading indices and aspect ratio increase. The porosity volume fraction is found to be more significant than the aspect ratio effect. The research demonstrates a range of operable speeds for porous and non-porous disk profiles that can be used in industries as design data. The results show a significant increase in limit speed for an exponential disk when compared to other disk profiles, and thus, the study demonstrates a range of FG-based structures for applications in industries that will not only save material (lightweight structures) but also improve overall performance.

Experimental Study on the Small-Scale Rotor Hover Performance in Partial Ground Conditions (부분적 지면조건 하에서의 소형 로터 블레이드 제자리 비행 성능에 대한 실험적 연구)

  • Seo, Jin-Woo;Lee, Byoung-Eon;Kang, Beom-Soo;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.12-21
    • /
    • 2010
  • This paper focuses on the hover performance experiment of a small-scale single rotor in partial ground conditions. In this study, small-scale rotor blade rotating device and floor panel are used to include partial ground effect. Thrust and torque were measured with varying collective pitch angles at fixed rotor rotating speed. The overlap distance between rotor and ground is d, the rotor diameter is D. It was shown that the ground effects have little effect on the rotor performance until d/D is 0.25. Four blade rotor has more increased thrust and more reduced power than those of two blade rotor because of stronger ground effect. In addition, it was also found that the thrust increases as a collective pitch angle become smaller. Based on these experiment results, we deduced new empirical equation considered blade number and partial ground effect.

Fault Diagnosis of a Rotating Blade using HMM/ANN Hybrid Model (HMM/ANN복합 모델을 이용한 회전 블레이드의 결함 진단)

  • Kim, Jong Su;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.814-822
    • /
    • 2013
  • For the fault diagnosis of a mechanical system, pattern recognition methods have being used frequently in recent research. Hidden Markov model(HMM) and artificial neural network(ANN) are typical examples of pattern recognition methods employed for the fault diagnosis of a mechanical system. In this paper, a hybrid method that combines HMM and ANN for the fault diagnosis of a mechanical system is introduced. A rotating blade which is used for a wind turbine is employed for the fault diagnosis. Using the HMM/ANN hybrid model along with the numerical model of the rotating blade, the location and depth of a crack as well as its presence are identified. Also the effect of signal to noise ratio, crack location and crack size on the success rate of the identification is investigated.

Investigation of Turbulent Flow in Rotating Straight Square Duct (회전하는 정사각 직관내 난류유동)

  • Chun, K.H.;Choi, Y.D.;Kim, D.C.;Choi, S.Y.;Lim, H.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.766-771
    • /
    • 2001
  • An experimental study was undertaken to investigate the effect of coriolis force for the turbulent flow at low Reynolds numbers in a rotating straight square duct. The study was carried out using a hot-wire anemometer. The flow Reynolds number based on the hydraulic diameter ranged from 4,000 to 18,000 and Rotation number ranged from 0 to 0.196. At Re=9000, developing turbulent flow was calculated for mean velocity and Reynolds stress. Pressure coefficient and energy dissipation spectrum were also calculated.

  • PDF

Vibration analysis of a pretwisted rotating blade with a concentrated mass (집중질량과 초기 비틀림각을 갖는 회전블레이드의 진동해석)

  • Kwak, Joo-Young;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.190-197
    • /
    • 1998
  • Equations of motions of a pretwisted rotating blade with a concentrated mass in an arbitrary position are derived. The flapwise and chordwise equations are coupled to each other due to the pretwist angle of the blade. As the angular speed, hub radius ratio, pretwist angle and concentrated mass vary, the vibration characteristics of the blade change. It is found that eigenvalue lociveering phenomena occur between two closing loci due to the pretwist angle. The effect of the pretwist angle on the critical angular speed and location of the concentrated mass on the natural frequencies are also investigated.

Vibration Characteristics of Rotating Composite Blades with Initial Twist (초기 비틀림이 있는 회전하는 복합재료 블레이드의 진동특성에 대한 연구)

  • 기영중;김지환
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.127-130
    • /
    • 2002
  • Vibration analysis of rotating blade is the main purpose of the present study. In this study, general formulation is performed for rotating shell structures including the centrifugal force, Coriolis acceleration and initial twist. Furthermore, simplified equations are derived for the case of an open cylindrical shell. Based on the concept of degenerated shell element with the Reisser-Mindlin's assumptions, the finite element method is adopted for solving the problems. In addition, it is investigated the effect of the stacking sequence of the composites on the vibration characteristics of the blade. The results are summarized for the various parameters such as the speed of rotation and pre-twist of the blade. Also, present results are compared with the previous works and experimental data.

  • PDF

Dynamic Response Analysis of Rotating Functionally Graded Thin-Walled Blades Exposed to Steady Temperature and External Excitation (고온에서 외부 가진력을 받는 회전하는 경사기능 박판 블레이드의 동적응답 해석)

  • Oh, B.Y.;Na, Sung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.643-648
    • /
    • 2004
  • This paper is dedicated to the thermoelastic modeling and dynamic response of the rotating blades made of functionally graded ceramic-metal based materials. The blades modeled as non-uniform thin walled beams fixed at the hub with various selected values of setting angles and pre-twisted angles. In this study, the blade is rotating with a constant angular velocity and exposed to a steady temperature field as well as external excitation. Moreover, the effect of the temperature gradient through the blade thickness is considered. Material properties are graded in the thickness direction of the blade according to the volume fraction power law distribution. The numerical results highlight the effects of the volume fraction, temperature gradient, taper ratio, setting angle and pre-twisted angle on the dynamic response of bending-bending coupled beam characteristics are provided for the case of a biconvex cross section and pertinent conclusions are outlined.

  • PDF

Oil Whirl Effects on Rotor-Bearing System Identifications by Modal Testing

  • Jei, Yang-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.105-110
    • /
    • 1991
  • Oil whirl effects on system identification during modal testings are discussed. When the forward rotating excitations act, the oil whirl effects seriously appear. But when the backward rotating and uni-directional excitations act, and the magnitude of forward excitation is small, oil whirl effect do not appear in forced response function. The results of simulation of oil whirl effects during modal testing are well coincident with those of experiments. With the uni-directional excitation technique the linearized dynamic coefficients of fluid film bearings and seals can be estimated more accurately than with the circular rotating excitation technique. But with the circular excitation technique oil whirl effects can be well investigated.

  • PDF