• Title/Summary/Keyword: rotating beam

Search Result 309, Processing Time 0.035 seconds

Modal Analysis of Rotating Beam Structures Having Complex Configurations Employing Multi-Reference Frames

  • Kim, Jung-Min;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.66-75
    • /
    • 2006
  • A modeling method for the modal analysis of rotating beam structures having complex configurations employing multi-reference frames is presented in the present study. In most structural analysis methods, single reference frame is employed for the modal analysis. For simple structures such as single beam or single plate, the method of employing single reference frame usually provides rapidly converging accurate results. However, for general structures having complex configurations, such a method provides slowly converging, and often erroneous, results. In the present study, the effects of employing multi-reference frames on the convergence and the accuracy of the modal analysis of rotating beam structures having complex configurations are investigated.

Dynamics of a Rotating Cantilever Beam Near Its Critical Angular Speed (임계각속도 주변에서의 회전 외팔보의 동역학)

  • Choe, Chang-Min;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1231-1237
    • /
    • 2000
  • Dynamics of a rotating cantilever beam near its critical angular speed is investigated in this paper. The external, force is idealized as a periodic function which has the same period as the rotati ng frequency of the beam. The equations of motion are derived and transformed into a dimensionless form. A prescribed spin-up motion is employed for the rotating motion. Numerical study shows that the steady state and the transient responses of the beam are affected by the spin-up time constant and there exists a time constant at which the maximum transient response becomes minimum.

Position control of two link flexible manipulator using Timoshenko beam model (Timoshenko beam 모델을 이용한 두개의 링크를 갖는 유연성 매니퓰레이터의 위치 제어)

  • 김기환;강경운;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.382-387
    • /
    • 1990
  • In this paper, the dynamic modeling and tip position of rotating Timoshenko beam analyzed by means of FEM (finite element method) and Hyperstability MRAC(model referenced adaptive control) technique of each other. The governing equations of the rotating beams are drived from Hamilton's principle. The dynamic model of this multi-link is drived by Lagrange approach. The shear deformation and rotary inertia are incorporated into a finite element model for determining the bending frequencies of the rotating beam. Simulation results for uniform cantilever beams by using the MRAC are compared with the available results. It will be shown that the proposed method offers an accurate and effective one to solve the free vibration problems of rotating beams' stability.

  • PDF

A Finite Element Analysis for a Rotating Cantilever Beam (회전 외팔보에서의 유한요소 연구)

  • Chung, Jin-Tai;Yoo, Hong-Hee;Kim, Gang-Seong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.529-534
    • /
    • 2000
  • A finite element analysis for a rotating cantilever beam is presented in this study. Based on a dynamic modelling method using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle. Two of the linear differential equations show the coupling effect between stretch and chordwise deformations. The other equation is an uncoupled one for the flapwise deformation. From these partial differential equations and the associated boundary conditions, are derived two weak forms: one is for the chordwise motion and the other is for the flapwise motion. The weak forms are spatially discretized with newly defined two-node beam elements. With the discretized equations or the matrix-vector equations, the behaviours of the natural frequencies are investigated for the variation of the rotating speed.

  • PDF

Vibration analysis of rotating Timoshenko beams by means of the differential quadrature method

  • Bambill, D.V.;Felix, D.H.;Rossi, R.E.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.231-245
    • /
    • 2010
  • Vibration analysis of rotating beams is a topic of constant interest in mechanical engineering. The differential quadrature method (DQM) is used to obtain the natural frequencies of free transverse vibration of rotating beams. As it is known the DQM offers an accurate and useful method for solution of differential equations. And it is an effective technique for solving this kind of problems as it is shown comparing the obtained results with those available in the open literature and with those obtained by an independent solution using the finite element method. The beam model is based on the Timoshenko beam theory.

Crack Detection of Rotating Blade using Hidden Markov Model (회전 블레이드의 크랙 발생 예측을 위한 은닉 마르코프모델을 이용한 해석)

  • Lee, Seung-Kyu;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.99-105
    • /
    • 2009
  • Crack detection method of a rotating blade was suggested in this paper. A rotating blade was modeled with a cantilever beam connected to a hub undergoing rotating motion. The existence and the location of crack were able to be recognized from the vertical response of end tip of a rotating cantilever beam by employing Discrete Hidden Markov Model (DHMM) and Empirical Mode Decomposition (EMD). DHMM is a famous stochastic method in the field of speech recognition. However, in recent researches, it has been proved that DHMM can also be used in machine health monitoring. EMD is the method suggested by Huang et al. that decompose a random signal into several mono component signals. EMD was used in this paper as the process of extraction of feature vectors which is the important process to developing DHMM. It was found that developed DHMMs for crack detection of a rotating blade have shown good crack detection ability.

  • PDF

Study on the Stress Distribution of a Rotating Cantilever Beam in Transient Vibration (회전 외팔보의 과도상태 진동시 발생하는 응력분포 연구)

  • 최창민;유홍희;양현익
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.306-311
    • /
    • 2000
  • The stress distribution of a rotating cantilever beam in transient vibration is investigated in this paper. The equations of motion of the rotating bean are derived and numerical results are obtained. The tensile and bending stresses which occur when the beam rotates with the tuned angular speed or passes through the tuned angular speed are obtained. Since those stresses are usually significant during the rotational motion, it is important to estimate them accurately in the design of the rotating structure.

  • PDF

Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams (회전하는 보의 유한요소해석을 위한 유리형상함수의 확장)

  • Kim, Yong-Woo;Jeong, Jae-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.591-598
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfy the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfy the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beams.

Vibration Analysis of a Rotating Cantilever Beam Undergoing Impulsive Force Using Wavelet Transform (Wavelet Transform을 이용한 충격력을 받는 회전하는 외팔 보의 진동 특성 해석)

  • Park, Ho-Young;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1024-1032
    • /
    • 2008
  • The vibration characteristics of a rotating cantilever beam undergoing impulsive force are investigated using wavelet transformation. The transient response induced by the impulsive force and the rigid body motion of the beam are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. The vibration characteristics of the beam can be analyzed in time-frequency domain with the wavelet transform method. Therefore, the effects of the impulsive force on the transient vibration characteristics of the beam can be investigated more effectively.

Predicting shear strength of RC exterior beam-column joints by modified rotating-angle softened-truss model

  • Wong, Simon H.F.;Kuang, J.S.
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.59-70
    • /
    • 2011
  • A theoretical model known as the modified rotating-angle softened-truss model (MRA-STM), which is a modification of Rotating-Angle Softened-Truss Model and Modified Compression Field Theory, is presented for the analysis of reinforced concrete membranes in shear. As an application, shear strength and behaviour of reinforced concrete exterior beam-column joints are analysed using the MRA-STM combining with the deep beam analogy. The joints are considered as RC panels and subjected to vertical and horizontal shear stresses from adjacent columns and beams. The strut and truss actions in a beam-column joint are represented by the effective transverse compression stresses and a softened concrete truss in the proposed model. The theoretical predictions of shear strength of reinforced concrete exterior beam-column joints from the proposed model show good agreement with the experimental results.