• 제목/요약/키워드: root promotion

검색결과 236건 처리시간 0.011초

Antagonistic and growth promotion potential of endophytic bacteria of mulberry (Morus spp.)

  • Pratheesh Kumar, Punathil Meethal;Ramesh, Sushma;Thipeswamy, Thipperudraiah;Sivaprasad, Venkadara
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제31권2호
    • /
    • pp.107-114
    • /
    • 2015
  • Endophytes provide multifarious benefits such as promotion of plant growth and yield, suppression of phyto-pathogens, phosphate solubilising and fixation nitrogen. A study has been carried out to explore growth promotion and antifungal activities of endophytes of mulberry (Morus spp.). Endophytic bacteria were isolated from mulberry plants and studied their cultural, morphological characters, growth promotion as well as their antifungal activity against Rhizoctonia bataticola and Fusarium oxysporum , two mulberry root rot associated pathogens. Except two isolates, all bacteria were colourless and the colony size of eight isolates was small. The margin of five isolates was irregular and the consistency of three isolates was creamy, six isolates was slimy and one was mucoid. Texture of seven isolates was convex and others were flat. Eight isolates were gram positive and the rest Gram negative, five were cocci and others were bacilli (rod shaped). Four isolates were motile and all were catalase positive and only three isolates were oxidase positive. Spore staining was positive only for two isolates. The growth promotion study showed that there was significant difference in root length and seedling length. The antagonistic effect of the bacterial isolates was tested against R. bataticola showed significant (p <0.05) influence of the bacteria, days after inoculation and their interaction on the inhibition of fungal growth. The isolate En-7 completely inhibited the fungus followed by En-5 (66.67%). The bacterial isolates significantly (p <0.05) inhibited growth of F. oxysporum in PDA. The mean inhibition was higher (70.45%) in case of En-7 followed by En-8 (68.65%) and En-10 (66.44%). The study reveals that some endophytic bacteria associated with mulberry have growth promotion and antifungal activity and could be explored for promotion of mulberry growth and managing root rot disease.

유용 미생물을 활용한 식물 병원 곰팡이의 억제와 식물 생장촉진 효과 (Inhibition Effects Against Plant Pathogenic Fungi and Plant Growth Promotion by Beneficial Microorganisms)

  • 정진희;김상우;김윤석;거비르 람살;이윤수
    • 한국균학회지
    • /
    • 제41권2호
    • /
    • pp.118-126
    • /
    • 2013
  • The experiment was carried out to analyze the inhibition effect of plant pathogenic fungi and growth promotion activity induced by the bacterial strains isolated from peatmoss. Among the isolated bacterial strains, B10-2, B10-4, B10-5 and B10-6 which showed more than 30% inhibition rate against Botrytis cinerea and Rhizoctonia solani in vitro, were further analyzed in the greenhouse for the growth promotion activity on lettuce (Lactuca sativa), pak-choi (Brassica compestris L. ssp. chinensis) and Chinese cabbage (Brassica campestris L. ssp. pekinensis). The results showed the treatment of B10-4 on lettuce showed the highest growth promotion activity with the leaf area ($169.17cm^2$), fresh weight (leaf: 40.29 g, root: 8.80 g)and dry weight (leaf: 11.24 g, root: 4.17 g), which was about two folds as compared to control. On pak-choi, the growth promotion rate was the highest with the leaf area of $112.87cm^2$, leaf fresh weight of 60.70 g, root fresh weight of 3.37 g, leaf dry weight of 14.34 g, and root dry weight of 1.90 g. As a result of treatment of B10-13 on chinese cabbage, the growth promotion rate was the highest with the leaf area ($293.56cm^2$), fresh weight (leaf: 113.67 g, root: 2.40 g) and dry weight (leaf: 6.03 g, root: 0.53 g). The production of Indole Acetic Acid (IAA) and Indole-3-Butylic Acid (IBA) were also analyzed in these bacterial isolates. The IAA and IBA analyses were carried out in all bacterial isolates each day within the 5 days of incubation period. The highest production of IAA was observed with $112.57{\mu}g/mg$ protein in B10-4 after 3 days of incubation and IBA production was the highest in B10-2 with $58.71{\mu}g/mg$ protein after 2 days of incubation. Also, phosphate solubilizing activity was expressed significantly in B10-13 in comparison to that of other bacterial isolates. Bacterial identification showed that B10-2 was Bacillaceae bacterium and B10-5 was Bacillus cereus, B10-4 and B10-6 were Bacillus sp. and B-13 was Staphylococcus sp. by ITS sequence.

Impact of Rhizosphere Competence of Biocontrol Agents upon Diseases Suppression and Plant Growth Promotion

  • Park, Chang-Seuk-
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1994년도 Proceedings of International Symposium on BIOLOGICAL CONTROL OF PLANT DISEASES Korean Society of Plant Pathology
    • /
    • pp.27-49
    • /
    • 1994
  • Root colonization of biocontrol agents via seed treatment was investigated and a compatible combination, Gliocladium virens G872B and Pseudomonas putida Pf3, in colonizing cucumber rhizosphere was confirmed through the study. Much higher number of fungal and bacterial propagules were detected when two isolates were inoculated together. The presence of Pf3 in root system was greatly helpful to G872B to colonize at root tip. The mechanism of this phenomenon is partially elucidated through the results of in vitro experiments and the observations of scanning electron and fluorescence microscope. Addition of Pf3 cells resulted earlier germination of G872B conidia and increased mycelial growth. And the more number of germinated conidia on seed coat, the more vigorous hypal streching and sporulation on the root surface were observed in coinoculated treatment. The propagules of G872B on the cucumber root when they were challenged against the pathogenic Fusarium oxysporum, were even higher than that of G872B treated alone, and the magnitude of such a difference was getting grater toward the root ip and the population of F. oxysporum on the root was reduced by seed inoculation of G872B. The rhizosphere competence was obviously reflected to disease suppression and plant growth promotion that induced by the given isolate. Green house experiments revealed that the combined treatment provided long-term disease suppression with greater rate and the larger amount of fruit yield than single treatments. Through this study the low temperature growing Pseudomonas fluorescens M45 and MC07 were evaluated to apply them to the winter crops in field or plastic film house. In vitro tests reveal that M45 and MC07 inhibited the mycelial growth of Pythium ultimum, Rhizoctona solani and Phytophthora capsici and enhanced growth of cucumber cotyledon in MS agar. This effect was more pronounced when the bacteria were incubated at 14$^{\circ}C$ than at 27$^{\circ}C$. And disease suppression and plant growth promotion in green house were also superior at low temperature condition. Seed treatment of M45 or soil treatment of MC07 brought successful control of damping-off and enhanced seedling growth of cucumber. The combined treatment of two isolates was more effective than any single treatment.

  • PDF

Improved Plant Growth from Seed Bacterization Using Siderophore Overproducing Cold Resistant Mutant of Pseudomonas fluorescens

  • Katiyar, Vandana;Goel, Reeta
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.653-657
    • /
    • 2004
  • The cold resistant mutants of P. fluorescens strain $PRS_{9}$ and ATCC13525 were developed which could grow equally well at $28^{\circ}C$ and $10^{\circ}C$. All the mutants were tested for siderophore production, of which $CRPF_9$ (ATCC13525 mutant) was selected, as there was a 16.8-fold increase when compared to its wild-type. Under in vitro conditions, $CRPF_9$ showed better growth promotion both in wheat (29.1% increase in root length) and mung bean (51.5% increase in root length) at $10^{\circ}C$. Greenhouse trials showed a significant increase in root (13.84cm) and shoot (15.0cm) length of $CRPF_9$-treated mung bean seeds, indicating increased rhizocompetence of the mutant. Ferric citrate was a better iron source than ferric hydroxide for plant growth.

Bacterial Microbiome Differences between the Roots of Diseased and Healthy Chinese Hickory (Carya cathayensis) Trees

  • Xiao-Hui Bai;Qi Yao;Genshan Li;Guan-Xiu Guan;Yan Fan;Xiufeng Cao;Hong-Guang Ma;Mei-Man Zhang;Lishan Fang;Aijuan Hong;Dacai Zhai
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1299-1308
    • /
    • 2023
  • Carya cathayensis is an important economic nut tree that is endemic to eastern China. As such, outbreaks of root rot disease in C. cathayensis result in reduced yields and serious economic losses. Moreover, while soil bacterial communities play a crucial role in plant health and are associated with plant disease outbreaks, their diversity and composition in C. cathayensis are not clearly understood. In this study, Proteobacteria, Acidobacteria, and Actinobacteria were found to be the most dominant bacterial communities (accounting for approximately 80.32% of the total) in the root tissue, rhizosphere soil, and bulk soil of healthy C. cathayensis specimens. Further analysis revealed the abundance of genera belonging to Proteobacteria, namely, Acidibacter, Bradyrhizobium, Paraburkholderia, Sphaerotilus, and Steroidobacter, was higher in the root tissues of healthy C. cathayensis specimens than in those of diseased and dead trees. In addition, the abundance of four genera belonging to Actinobacteria, namely, Actinoallomurus, Actinomadura, Actinocrinis, and Gaiella, was significantly higher in the root tissues of healthy C. cathayensis specimens than in those of diseased and dead trees. Altogether, these results suggest that disruption in the balance of these bacterial communities may be associated with the development of root rot in C. cathayensis, and further, our study provides theoretical guidance for the isolation and control of pathogens and diseases related to this important tree species.

Biological characteristics of Paenibacillus polymyxa GBR-1 involved in root rot of stored Korean ginseng

  • Kim, Young Soo;Kotnala, Balaraju;Kim, Young Ho;Jeon, Yongho
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.453-461
    • /
    • 2016
  • Background: This study aims to describe the characterization of Paenibacillus polymyxa GBR-1 (GBR-1) with respect to its positive and negative effects on plants. Methods: The morphological characteristics of GBR-1 were identified with microscopy, and subjected to Biolog analysis for identification. Bacterial population and media optimization were determined by a growth curve. The potential for GBR-1 as a growth promoting agent, to have antagonistic activity, and to have hydrolytic activity at different temperatures was assessed. The coinoculation of GBR-1 with other microorganisms and its pathogenicity on various stored plants, including ginseng, were assessed. Results: Colony morphology, endospore-bearing cells, and cell division of GBR-1 were identified by microscopy; identification was performed by utilizing the Biolog system, gas chromatography of fatty acid methyl esters (GC-FAME). GBR-1 showed the strongest antagonistic activity against fungal and bacterial pathogens. GBR-1 cell numbers were relatively higher when the cells were cultured in brain heart infusion (BHI) medium when compared with other media. Furthermore, the starch-hydrolytic activity was influenced by GBR-1 at higher temperature compared to low temperatures. GBR-1 was pathogenic to some of the storage plants. Coinoculation of GBR-1 with other pathogens causes differences in rotting on ginseng roots. A significant growth promotion was observed in tobacco seedlings treated with GBR-1 suspensions under in vitro conditions, suggesting that its volatile organic compounds (VOCs) might play a role in growth promotion. Conclusion: The results of this study indicate that GBR-1 has both positive and negative effects on ginseng root and other stored plants as a potential biocontrol agent and eliciting in vitro growth promotion.

Bacterial Traits Involved in Colonization of Arabidopsis thaliana Roots by Bacillus amyloliquefaciens FZB42

  • Dietel, Kristin;Beator, Barbara;Budiharjo, Anto;Fan, Ben;Borriss, Rainer
    • The Plant Pathology Journal
    • /
    • 제29권1호
    • /
    • pp.59-66
    • /
    • 2013
  • Colonization studies previously performed with a green-fluorescent-protein, GFP, labeled derivative of Bacillus amyloliquefaciens FZB42 revealed that the bacterium behaved different in colonizing surfaces of plant roots of different species (Fan et al., 2012). In order to extend these studies and to elucidate which genes are crucial for root colonization, we applied targeted mutant strains to Arabidopsis seedlings. The fates of root colonization in mutant strains impaired in synthesis of alternative sigma factors, non-ribosomal synthesis of lipopeptides and polyketides, biofilm formation, swarming motility, and plant growth promoting activity were analyzed by confocal laser scanning microscopy. Whilst the wild-type strain heavily colonized surfaces of root tips and lateral roots, the mutant strains were impaired in their ability to colonize root tips and most of them were unable to colonize lateral roots. Ability to colonize plant roots is not only dependent on the ability to form biofilms or swarming motility. Six mutants, deficient in abrB-, sigH-, sigD-, nrfA-, yusV and RBAM017410, but not affected in biofilm formation, displayed significantly reduced root colonization. The nrfA- and yusV-mutant strains colonized border cells and, partly, root surfaces but did not colonize root tips or lateral roots.

C57BL/6 mouse에서 뽕나무 추출물의 모발성장효과 (Effect of Morus alba extract for hair growth promotion in C57BL/6 mouse)

  • 정주영;박재영;정현숙
    • 통합자연과학논문집
    • /
    • 제1권1호
    • /
    • pp.19-23
    • /
    • 2008
  • Morus alba has been well known for its tonic effect or preventing of hypertension, aging, or diabetes mellitus in Asian countries. To evaluate the its effect on hair growth promotion, we performed the hair regrowth experiment with leaf, branch, root and fruit extract of Morus alba on animal model of C57BL/6 mouse. The hair regrowth effect was remarkable in the mouse treated branch and root extract (with what %), however, little effect on hair regrowth appeared on the mouse treated with leaf extract. Morus alba extract displayed antibacterial effects on Bacillus subtilis, Staphylococcus aureus, Pseudomonas and Candida albicans. These results indicated that branch and root extract of Morus alba could be applicable for hair regrowth or prevention of hair loss in human.

  • PDF

Colonization and Population Changes of a Biocontrol Agent, Paenibacillus polymyxa E681, in Seeds and Roots

  • Park, Okhee;Kim, Jinwoo;Ryu, Choong-Min;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • 제20권2호
    • /
    • pp.97-102
    • /
    • 2004
  • Paenibacillus polymyxa E681, with its plant growth promotion and root colonization ability, has been proven to be a promising biocontrol agent of cucumber and barley. This study investigated the attributes related to the movement of bacteria from the seed to the radicle and to the whole root system. It also illustrated the existing form and population changes of the bacteria on seed and root using the scanning electron microscope and confocal laser scanning microscopy. The bacteria invaded and colonized the inside of the seed coat while the seeds were soaked in bacterial suspension. Almost the same number of bacteria on seed surface invaded the inside of the seed coat right after seed soaking. The population densities of E681 increased greatly inside as well as on the surface of the seed before the radicle emerged. The bacteria attached on the emerging radicle directly affected the initial population of newly emerg-ing root. The colonized cells on the root were arranged linearly toward the elongation of the root axis. In addition to colonizing the root surface, strain E681 was found inside the roots, where cells colonized the inter-cellular space between certain epidermal and cortical cells. When the cucumber seeds were soaked in bacterial suspension and sown in pot, the bacterial populations attached on both the surface and inside of the root were sustained up to harvesting time. This means that E681 successfully colonized the root of cucumber and sustained its population density up to harvesting time through seed treatment.

해안 환경림 조성용 식물개발을 위한 위성류의 증식과 생장특성에 관한 연구 (A Study on Propagation and Growth Characteristics of Tamarix chinensis for Development of Plant Using in Coast Environmental Forests)

  • 박종민;김용길
    • 한국조경학회지
    • /
    • 제34권3호
    • /
    • pp.79-90
    • /
    • 2006
  • Tamarix chinenis blooms twice a you and its flowers, branches and leaves make the adjustment of tree shape. Propagation methods and growth characteristics of T. chinensis were studied in order to ascertain its potential use as one of vegetation resources for coast forestation and landscaping. The study results indicated that 1 or 2 you old hard wood cuttings showed higher rooting ratio than greenwood or semi hard wood cuttings. One to one mixture between vermiculite and pearlite appeared to be the best for bed soil, and sea sand and silt(loess) mixture was the next. Sea sand and granitic soil followed after. In terms of seasonal differences, spring cuttings showed the best rooting ratio, root number, and root length. Fall cuttings followed after spring cutting, and summer cuttings showed worst results regarding rooting ratio, root number, and root length. The best rooting promotion effects of growth regulators were observed with sea sand bed soils. There was no significant difference among growth regulators in terms of rooting and shoot growth. Low concentration below 100 ppm of growth regulators was enough for rooting promotion effect. In general, the number and mean length of roots and shoots were showed the excellent records in the sites with high rooting ratio. The study result strongly showed that T. chinensis can be considered as a suitable tree for coast forestation and landscaping because of its easy cutting propagation and rapid growth on saline lands.