• Title/Summary/Keyword: root lengths

Search Result 138, Processing Time 0.03 seconds

Impact of Physicochemical Properties of Root Substrates on Growth of Mother Plants and Occurence of Daughter Plants in 'Seolhyang' Strawberry Propagation through Bag Culture ('설향' 딸기 번식을 위한 자루재배시 상토의 물리·화학성이 모주 생육과 자묘 발생에 미치는 영향)

  • Choi, Jong-Myung;Park, Ji-Young;Latigui, Ahmed
    • Horticultural Science & Technology
    • /
    • v.29 no.2
    • /
    • pp.95-101
    • /
    • 2011
  • The influence of physicochemical properties of root substrates on the growth of mother plants and occurrence of daughter plants in 'Seolhyang' strawberry propagation were investigated through plastic bag cultivation. Six different formulations of root substrates were coir dust + perlite (5:5, A), coir dust + perlite (6:4, B), coir dust + perlite (7:3, C), coir dust + coconut chip (7:3, D), coir dust + coconut chip (6:4, E), and peatmoss + vermiculite (5:5, v/v; F). The total porosities (TP) and container capacities (CC) of all root substrates were higher than 85% and 55%, respectively, indicating that all substrates were in the acceptable range. But the TP and CC of F substrate were 91.5% and 60%, respectively, which were the highest among the root substrates tested. In the soil chemical properties analyzed before planting and after harvesting of 'Seolhyang' strawberry mother plants, the root substrates of A, B, C, and F had higher electrical conductivity and $NO_3$-N concentrations than those of D and F. The root substrates of A, B, C, and F had heavier runner fresh and dry weights, longer runner lengths, and more daughter plant occurrence than those of D and F. The treatment F had higher tissue N content than any other treatments at 120 days after the transplanting of 'Seolhyang' strawberry and statistical differences were not observed among remained 5 substrates. The treatment of F also had the higher tissue contents of other nutrients except N analyzed at 120 days after transplanting. These results indicated that soil chemical properties rather than physical properties severely influenced the growth of runners and occurrence of daughter plants.

Interactions between Indole-3-acetic Acid Producing Acinetobacter sp. SW5 and Growth of Tomato Plant (Indole-3-acetic acid를 생성하는 Acinetobacter sp. SW5와 토마토 식물 간의 상호작용)

  • Kwon, Hyeok-Do;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.302-307
    • /
    • 2014
  • Many rhizobacteria can promote plant growth through various direct or indirect mechanisms, and their production of phytohormones such as indole-3-acetic acid (IAA) may have pronounced effects on growth and development of plants. Rhizobacterial strain isolated from rhizosphere of foxtail (Setaria viridis), Acinetobacter sp. SW5 produced 118.1 mg/L of IAA and 4.5 mg/L of gibberellin ($GA_3$) in brain heart broth medium at 2 and 1 day of incubation, respectively. In a pot test the lengths of stem and root and fresh weight of the germinated tomato seedlings treated with Acinetobacter sp. SW5 significantly increased by 26.3, 33.3, and 105.3%, respectively compared to those of the uninoculated control in 12 weeks of cultivation. When the root exudate secreted from tomato seedlings was analyzed by HPLC, 3.75 ng mg tomato $root^{-1}$ of tryptophan which is an IAA precursor was detected. Acinetobacter sp. SW5 could produce $4.06{\mu}M$ of IAA from root exudate from 8 tomato seedlings. Together with the capability of growth of Acinetobacter sp. SW5 in the tomato root exudates, this IAA secreted by bacteria might contribute to enhance the growth of tomato plants.

Growth retardation and differential regulation of expansin genes in chilling-stressed sweetpotato

  • Noh, Seol Ah;Park, Sun Hee;Huh, Gyung Hye;Paek, Kyung-Hee;Shin, Jeong Sheop;Bae, Jung Myung
    • Plant Biotechnology Reports
    • /
    • v.3 no.1
    • /
    • pp.75-85
    • /
    • 2009
  • We report here a first evaluation of chilling-responsive gene regulation in the sweetpotato. The growth of sweetpotato plants was severely retarded at $12^{\circ}C$; the lengths of the leaf, petiole, and root were markedly reduced and microscopic observation revealed that the elongation growth of the epidermal cells in each of these organs was significantly reduced. We examined the transcriptional regulation of three sweetpotato expansin genes (IbEXP1, IbEXP2 and IbEXPL1) in response to various chilling temperatures (12, 16, 22, and $28^{\circ}C$). In the leaf and petiole, the highest transcript levels were those of IbEXP1 at $28^{\circ}C$, whereas IbEXPL1 transcript levels were highest in the root. IbEXP1 mRNA levels in the $12^{\circ}C-treated$ petiole showed a fluctuating pattern (transient decrease-recovery-stable decrease) for 48 h. In the leaf and petiole, IbEXP1 and IbEXPL1 exhibited a similar response to chilling in that their mRNA levels decreased at $22^{\circ}C$, increased at $16^{\circ}C$, and decreased dramatically at $12^{\circ}C$. In contrast, mRNA levels of IbEXP2 in the leaf fell gradually as the temperature fell from 28 to $12^{\circ}C$, while they remained unaltered in the petiole. In the root, mRNA levels of IbEXPL1 and IbEXP1 reached maximum levels at $16^{\circ}C$, and decreased significantly at $12^{\circ}C$. These data demonstrated that expression of these three expansin genes was ultimately down-regulated at $12^{\circ}C$; however, transcriptional regulation of each expansin gene exhibited its own distinctive pattern in response to various chilling temperatures.

Occurrence of Rice Seedling Blight Caused by Rhizopus sp. in Direct-Seedling Dry Paddy Field and Its Effects on the Later Growth of Rice (건답직파 벼 논에서 Rhizopus sp.에 의한 모마름병 발생과 감염정도가 벼 후기생육에 미치는 영향)

  • 강수웅;권진혁;정부근;박창석
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.94-97
    • /
    • 1995
  • In 1994, an abnormal rice growth was observed in a 0.5-ha scale farmer's field located at Chogye-Myeon, Hapcheon-Gun, Gyeongnam Province where rice cv. Hwayeongbyeo was seeded directly in dry paddy field conditions. The major symptoms were less stands per acreage, short leaf length, and hypertrophy of root tip portion. The disorder was identified as rice seeding bight caused by Rhizopus sp. The average plant stand per m2 in the infested field was 108, while it was 375 in the normal field, and leaf growth was retarded to less than one-third of healthy plant. The average leaf lengths of infected and healthy seedlings were 12.8cm and 38.9cm, respectively. When the infected seedlings were transplanted to pots, flooded-soil conditions developed no new root growth but upland conditions allowed 11.2 new roots emerging. The length of newly emerged root in infested soil was 5.3cm in upland and 7.1cm in intermediate flooding conditions. However, it was 10.9cm in non-infested soil with intermediate flooding conditions. When the plants were matured, the stem length of infected plants was reduced slightly as compared to normal plants, whereas the length of panicle was not significantly different between infected and healthy plants. The number of panicle per plant, however, greatly different with variation of infection degree. Grain quality such as the number of complete and incomplete grains per panicle, the complete grain weight per panicle, and the weight of 1000 grains was not significantly different.

  • PDF

Effects of Different Mat-Types on the Rooting and Growth in Dendranthema grandiflorum 'Ford' (식생매트가 국화 'Ford'의 발근 및 생육에 미치는 영향)

  • Nam, Yu-Kyeong;Lee, Jin-Hee;Jeong, Gi-Ryeong
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.341-345
    • /
    • 2011
  • This study was aimed to select the optimal mat condition using existing plant-mats for the efficient planting of bedding Chrysanthemum. At fifty days after cutting with Dendranthema grandiflorum 'Ford', root formation among the treatments using eight different mats outstood with the treatment using 10 mm thick coir net, which has medium inserted between mat layers - called C treatment, compared to other treatments; this treatment had the highest values in the plant height and shoot fresh weight, which were 29 cm and 5.6 g, respectively. On the contrary, in 40 days after transplanting root-formed mats to field, 12 mm thick jute net, which has medium inserted between mat layers, had the highest plants compared to other treatments. However, there was no significant difference in shoot weight compared to C treatment. In experiment of different lengths of cut, the results of growth after transplanting showed that 5 cm long cut performed best compared to 3 and 8 cm long cuts.

Integrated Management of Foot Rot of Lentil Using Biocontrol Agents under Field Condition

  • Hannan, M.A.;Hasan, M.M.;Hossain, I.;Rahman, S.M.E.;Ismail, Alhazmi Mohammed;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.883-888
    • /
    • 2012
  • The efficacy of cowdung, Bangladesh Institute of Nuclear Agriculture (BINA)-biofertilizer, and Bangladesh Agricultural University (BAU)-biofungicide, alone or in combination, was evaluated for controlling foot rot disease of lentil. The results exhibited that BINA-biofertilizer and BAU-biofungicide (peat soil-based Rhizobium leguminosarum and black gram bran-based Trichoderma harzianum) are compatible and have combined effects in controlling the pathogenic fungi Fusarium oxysporum and Sclerotium rolfsii, which cause the root rot of lentil. Cowdung mixing with soil (at 5 t/ha) during final land preparation and seed coating with BINA-biofertilizer and BAU-biofungicide (at 2.5% of seed weight) before sowing recorded 81.50% field emergence of lentil, which showed up to 19.85% higher field emergence over the control. Post-emergence deaths of plants due to foot rot disease were significantly reduced after combined seed treatment with BINA-biofertilizer and BAU-biofungicide. Among the treatments used, only BAU-biofungicide as the seed treating agent resulted in higher plant stand (84.82%). Use of BINA-biofertilizer and BAU-biofungicide as seed treating biocontrol agents and application of cowdung in the soil as an organic source of nutrient resulted in higher shoot and root lengths, and dry shoot and root weights of lentil. BINA-biofertilizer significantly increased the number of nodules per plant and nodules weight of lentil. Seeds treating with BAU-biofungicide and BINA-biofertilizer and soil amendment with cowdung increased the biomass production of lentil up to 75.56% over the control.

Seasonal biomass and carbon, nitrogen contents change of Schoenoplectus trigueter in Nakdong river estuary (낙동강 하구 갯벌에 생육하는 세모고랭이(Schoenoplectus triqueter)의 생체량 및 탄소, 질소 함량의 계절 변화)

  • An, Soonmo;Lee, Jiyoung;Jeong, Sinjae
    • Journal of Wetlands Research
    • /
    • v.8 no.3
    • /
    • pp.39-49
    • /
    • 2006
  • Seasonal biomass and carbon, nitrogen contents change of marsh club-rush (Schoenoplectus trigueter) was investigated in Nakdong river estuary, located near Busan, Korea. New shoot of S. trigueter sprouted from tuber in April and fast growth season was followed until mature in August. Mature lengths of shoot and root were 60 and 9.4 cm, respectively. The increase of biomass showed similar seasonal trends with length. Mature biomass were $3.5gind^{-1}$ in wet weight and $0.6gind^{-1}$ in dry weight. The biomass of S. trigueter in areal basis was also highest during July and August ($186gDWm^{-2}$). The shoot of S. trigueter was disappeared in October from the ground but the biomass of shoot was maintained as a form of detritus in sediment. The amount of S. trigueter detritus was about 30~50% of the biomass in August. During winter, the amount of detritus decreased with time but the biomass of root+tuber remained same, implying the root+tuber part is alive. The net productivity of S. trigueter estimated from biomass change were $538gDWm^{-2}yr^{-1}$, $240g-Cm^{-2}yr^{-1}$, $8.2g-Nm^{-2}yr^{-1}$ in dry weight, carbon and nitrogen equivalent respectively. During winter, carbon to nitrogen ratio in detritus increased implying the preferred remineralization of nitrogen during microbial degradation.

  • PDF

Effect of Silicon Application on Growth Response of Alfalfa Seedlings Grown under Aluminum Stress in Pots

  • Yoon, Il-Kyu;Kim, Min-Jun;Min, Chang-Woo;Khan, Inam;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.162-167
    • /
    • 2021
  • Aluminum (Al) stress in acidic pH is known to decrease the growth and productivity of alfalfa. However, not much is known about how the application of silicon (Si) affects the Al stress response in alfalfa. This study was conducted to evaluate the effect of exogenous application of Si on the growth of alfalfa seedlings exposed to Al stress in pots. Alfalfa seedlings grown in pots for 2 weeks were treated either Al stress (pH 4.0, 0.2 mM Al) or Al stress + Si (1 mM) for 5 days, lengths and biomass of shoot and root, and chlorophyll and carotenoid contents in leaf tissues were analyzed respectively. Al stress treatment inhibited shoot and root growth, and decreased fresh and dry weights, and chlorophyll content in leaves, but increased carotenoid content. In contrast, when alfalfa seedlings treated with Al stress combined with Si, delayed growth caused by Al stress of shoot and root of alfalfa seedlings was restored, dry weight was increased and chlorophyll content of leaf tissue was increased, but carotenoid content was decreased. These results suggest that Si has a function of alleviating Al toxicity in alfalfa, of which it exhibits a mitigating effect by a function that overlaps with some of the intracellular functions of carotenoids.

Effect of plant growth promoting bacteria on early growth of wheat cultivars

  • Lee, Sang Gyu;Lee, Hyeri;Lee, Jimin;Lee, Byung Cheon;Lee, Hojoung;Choi, Changhyun;Chung, Namhyun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.247-250
    • /
    • 2019
  • Wheat is one of the most important grains. Its consumption is increasing globally. Many countries are making efforts to increase the extent of wheat harvest. It is known that plant growth promoting rhizobacteria (PGPRs) have beneficial effects on various plants. Two PGPRs including Paenibacillus pabuli strain P7S (PP7S) and Pseudomonas nitroreducens strain IHB (PnIHB) were employed to investigate effects of PGPRs on early growth of three wheat cultivars (Koso, Seakumkang, and Jokyung). While PP7S had adverse effects on Seakumkang and Jokyung, PP7S had positive effects on Koso except root length compared to control group having no treatment of PP7S. However, all treatments with PnIHB had adverse effects on germination rate, root/shoot lengths, vigor index, and dry root/shoot weights of all three wheat cultivars. These positive effects with PP7S on Koso might be related to the earlier emergence of wheat seed above soil which is known to be an indicator of increased yield. Results of the present study suggest that if proper PGPR strains are selected, they could have positive effects on early growth rate of a wheat cultivar.

Butachlor and 1,8- Nphthalic Anhydride Effects on Post - Germination Growth, Anatomy and Root - Cell Membrane Permeability of Rice (벼의 발아후(發芽後) 생육(生育), 세포형태(細胞形態) 및 근세포막(筋細胞膜) 투과성(透過性)에 미치는 BUTACHLOR 와 1,8-NAPHTHALIC ANHYDRIDE 의 영향(影響))

  • Chun, J.C.;Hwang, I.T.;Han, M.S.
    • Korean Journal of Weed Science
    • /
    • v.5 no.1
    • /
    • pp.56-62
    • /
    • 1985
  • Effects of butachlor [N-(butoxymethyl)-2-chloro-2', 6'-diethyl acetanilide] and 1,8-naphthalic anhydride (NA) on post-germination growth, mesocotyl and root anatomy and root-cell membrane permeability of rice (Orvza saliva L.) were investigated. Lengths of mesocotyl and radicle were markedly decreased as the application rates of butachlor increased from 0.1 to 100 ppmW and NA from 1 to 100 ppmW, but there was no effect on coleoptile elongation. Application of butachlor-NA resulted in increase in coleoptile elongation, but decrease in mesocotyl elongation. Partial breakdown of cortical cells in root and mesocotyl was caused by either trutachlor or NA treatments, resulting in increase in intercellular air space. Further increase in the intercellular air space of root and mesocotyl was obtained when butachlor was applied in combination with NA. Increase in root-cell membrane permeability occurred when either butachlor or NA was applied. However, butachlor-NA treatments resulted in reduction in the permeability.

  • PDF