• Title/Summary/Keyword: root disease

Search Result 1,024, Processing Time 0.032 seconds

Effect of tetracycline-HCl root conditioning on gingival epithelial cell attachment to root surface (염산테트라싸이클린으로 처리한 치근면의 치은상피세포부착에 관한 연구)

  • Hwang, Na-Young;Park, Byung-Ki;Kim, Sang-Mok;Kuk, Jung-Ki;Park, Ju-Chul;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • The ultimate goal of periodontal therapy is directed to arresting the progression of the disease, and regenerating the fibrous attachment. In order to achieve such treatment aim, the plaque and calculus must be eliminated and the physiological conditions of the root surface must be changed to facilitate the attachment and migration of the new fibroblasts, The method of changing the proper root surface conditions to promote the healing of periodontal tissue involves mechanical procedures, such as scaling and root planing, and chemical procedures such as tetracycline-HCl. However, the formation of a long junctional epithelium was most frequently observed type of healing. Thus, the aim of this study was to examine in vitro the influence of surface conditioning of dentin by TC-HCl on human gingival epithelial cell attachment. Human gingival epithelial cells were obtained from healthy retromolar pad area(under the age 23 years). Seventy two teeth extracted from severe periodontitis were used as study material. To evaluate the epithelial cell attachment to dentin, the prepared specimen was divided to four groups. For the control group, only scaling and root planing were carried out, and for the test group, 1 to 3, the concentration of the TC-HCl was 50, 125 and 250mg/ml respectively. After cell cultivation time of 1-, 3-. 24 hour, for the indirect quantitative assessment of gingival epithelial cell attached to dentin sample, the absorbance of epithelial cell unattached to dentin was measured. The results were as follows; 1. There was no statistically significant difference between scaling and root planing group and TC-HCl 50mg/ml 125mg/ml and 250mg/ml group about absorbance of unattached epithelial cell to dentin sample(p>0.5). 2. As time passes, the absorbance of unattached gingival epithelial cell to dentin sample was decreased statistically significant(p<0.05). 3. There was no statistically significant difference among the TC-HCl group(p>0.05) We concluded that there was similar effect on gingival epithelial cell attachment between TC-HCl conditioning on root surface and only scaling and root planing treatment

Abberant Root Morphology in the Permanent First Molars : Case Reports (제1대구치에서 관찰되는 비정형적 치근형태에 대한 증례보고)

  • Lee, Eunkyoung;Kim, Youngjin;Kim, Hyunjung;Nam, Soonhyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.2
    • /
    • pp.172-179
    • /
    • 2015
  • The developmental mechanism of root formation is a complex process. Hereditary and environmental factors may affect the morphology of the developing root. A total of 12 cases was presented with permanent first molars with abberant root morphology. Clinically, these teeth appeared as a normal crown. However, radiographically, the root was slender, twisted and characterized by irregular lengths. In addition, root trunk length was shorter and pulp chamber was obliterated. In these cases, periapical radiolucency and loss of lamina dura were often observed. In 6 cases, an abnormal root of the primary second molars were also present, as well as root malformation of permanent first molars. In 3 cases, permanent central incisors also had a dysmorphic crown. These cases almost all had medical history, such as premature birth, brain infection or congenital heart disease in infants. The present paper describes cases of permanent first molars with an abnormal root that are rarely reported in literature. This case may intensify the variation in the permanent first molar and is intended to reinforce the clinician's awareness of rare morphology of the roots.

Biocontrol Potential of Streptomyces griseus H7602 Against Root Rot Disease (Phytophthora capsici) in Pepper

  • Nguyen, Xuan-Hoa;Naing, Kyaw-Wai;Lee, Young-Seong;Tindwa, Hamisi;Lee, Geon-Hyoung;Jeong, Byoung-Kon;Ro, Hee-Myeong;Kim, Sang-Jun;Jung, Woo-Jin;Kim, Kil-Yong
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.282-289
    • /
    • 2012
  • The root rot of pepper (Capsicum annuum L.) caused by Phytophthora capsici is one of the most important diseases affecting this crop worldwide. This work presents the evaluation of the capacity of Streptomyces griseus H7602 to protect pepper plants against Phytophthora capsici and establishes its role as a biocontrol agent. In this study, we isolated an actinomycete strain H7602 from rhizosphere soil, identified it as Streptomyces griseus by 16S rRNA analysis and demonstrated its antifungal activity against various plant pathogens including P. capsici. H7602 produced lytic emzymes such as chitinase, ${\beta}$-1,3-glucanase, lipase and protease. In addition, crude extract from H7602 also exhibited destructive activity toward P. capsici hyphae. In the pot trial, results showed the protective effect of H7602 against pepper from P. capsici. Application of H7602 culture suspension reduced 47.35% of root mortality and enhanced growth of pepper plants for 56.37% in fresh root and 17.56% g in fresh shoot as compared to control, resulting in greater protection to pepper plants against P. capsici infestation. Additionally, the enzymatic activities, chitinase and ${\beta}$-1,3-glucanase, were higher in rhizosphere soil and roots of pepper plants treated with H7602 than other treated plants. Therefore, our results indicated a clear potential of S. griseus H7602 to be used for biocontrol of root rot disease caused by P. capsici in pepper.

The Effects of Porous Resorbable Calcium Carbonate and Porous Replamineform Hydroxyapatite on the regeneration of the alveolar bone in the Periodontally involved extraction sockets in dogs. (Porous Resorbable Calcium Carbonate와 Porous Replamireform Hydroxyapatite가 성견치주질환 이환 발치와내 이식된 치근과 발치와 치조골 재생에 미치는 영향)

  • Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.334-349
    • /
    • 1996
  • Regeneration of the periodontal tissue destroyed by periodontal disease is one of the final goals of periodontal therapy. In the past few years, periodontists have used various alloplastic grafting materials in an attempt to regenerate bone lost from periodontal disease. These materials have used widely because they have shown to be nontoxic, biologically compatible with surrounding host tissue and chemically similar to bone. The purpose of this study was to investigate the effect of Porous Resorbable Calcium Carbonate and Porous Replamineform Hydroxyapatite on the regeneration of the alveolar bone and the healing of roots transplanted into the periodontally diseased extraction sockets of dogs. The experimental chronic periodontitis was induced by elastic ligatures on the 2nd and 3rd mandibular premolars of 2 adult dogs for 8weeks after surgically creating periodontal defect. The extracted root were split in half along the long-axis, and the extend of plaque exposure was marked on the root surfaces with burs. The roots were inserted in extraction sockets with Porous Resorbable Calcium Carbonate(PRCC) in left side and with Porous Replaminefrom Hydroxyapatite(PRH) in right side. The flaps were sutured to cover the sockets completely. The animals were sacrificed after 12 weeks of healing, and the specimens were examined histologically. The results were as follows: 1. No inflammatory reactions were observed in either groups. 2. Hoot resorption was observed in both groups while the general outline of the roots were maintained. 3. PRCC was almost completely resorbed and replaced with new bone, while R.H.A. was not resorbed & remained encased in newly-formed C-T and alveolar bone. 4. PRH was encapsulated with alveolar bone which has been deposited from apical & lateral area of the sockets, while the coronal portion of the sockets were filled with C-T. 5. In both groups, the resorbed portions of the roots were replaced with new bone. These results suggest that either PRCC or PRH may not interfere with bone formation or healing in extraction sockets, and in some degree, retard the root resorption. Because the roots maintained in anatomy, we think that graft materials prevent the root resorption.

  • PDF

Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

  • Zheng, You-Kun;Miao, Cui-Ping;Chen, Hua-Hong;Huang, Fang-Fang;Xia, Yu-Mei;Chen, You-Wei;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • Background: Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods: A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results: A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

Effect of LED Irradiation on Growth Characteristids of Ginseng Cultivated in Plastic Film House

  • Seo, Sang Young;Cho, Jong hyeon;Kim, Chang Su;Kim, Hyo Jin;Kim, Dong Won;An, Min Sil;Yoon, Du Hyeon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.45-45
    • /
    • 2019
  • This experiment was carried out using artificial clay and LED in the plastic film house (irradiation time: 08:00~18:00/day). Seedlings (n = 63 per $3.3m^2$) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity. The average air temperature from April to September was $12.3^{\circ}C$ $-26.0^{\circ}C$ and it was the the highest at $26.0^{\circ}C$ in August. The test area where fluorescent lamp was irradiated tended to be somewhat higher than the LED irradiation area. The chemical properties of the test soil are as follows. pH levels was 5.3~5.5, EC levels 0.45~0.52 dS/m and OM levels 33~37%. The total nitrogen content was 0.35~0.47% and the available $P_2O_5$ contents was 13.7~16.0 mg/kg, which was lower than the suitable level of 70~200 mg/kg. Exchangeable cations K and Mg contents were within acceptable ranges, but the Ca contents was $28{\sim}38cmol^+/kg$ levels higher than the permissible level ($2{\sim}6cmol^+/kg$). Germination of ginseng leaves took 8~9 days and the overall germination rate was 70~75%. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PAR (Photosynthetic Action Radiation) value, illuminance and solar irradiation. Photosynthetic rate was also increased with higher light intensity was investigated at $1.7{\sim}3.2{\mu}mol\;CO_2/m^2/s$. Leaf temperature ($23.7{\sim}24.8^{\circ}C$) by light intensity was the same trend. The growth of aerial parts (plant height etc.) were generally excellent when irradiated with 3 times the light intensity, the growth of the ginseng aerial parts were excellent as follows. The plant height was 42.6 cm, stem length was 25.2 cm, leaf length was 9.6 cm and stem diameter was 5.0 mm. The growth of underground part (root length etc.) was the same, and the root length was 24.4 cm, the tap root length was 6.0 cm, diameter of taproot was 18.2 mm and the fresh root weight was 17.2 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping off occurred 2.2~3.6% and incidence ratio of rusty root ginseng was 14.6~20.7%. Leaf discoloration rate was 13.7~48.9% and increased with increasing light intensity. Ginsenoside content of ginseng by light intensity is under analysis.

  • PDF

Neuroprotective Effect of Root Extracts of Berberis Vulgaris (Barberry) on Oxidative Stress on SH-SY5Y Cells

  • Rad, Elham Shahriari;Eidi, Akram;Minai-Tehrani, Dariush;Bonakdar, Shahin;Shoeibi, Shahram
    • Journal of Pharmacopuncture
    • /
    • v.25 no.3
    • /
    • pp.216-223
    • /
    • 2022
  • Objectives: Oxidative stress plays a key role in chronic and acute brain disorders and neuronal damage associated with Alzheimer disease (AD) and other neurodegeneration symptoms. The neuroprotective effects of berberine and Berberis vulgaris (barberry) root extract against apoptosis induced by hydrogen peroxide (H2O2) in the human SH-SY5Y cell line were studied. Methods: The methanolic extraction of barberry root was performed using a maceration procedure. Oxidative stress was induced in SH-SY5Y cells by H2O2, and an MTT assay was applied to evaluate the neuroprotective effects of berberine and barberry root extract. The cells were pretreated with the half maximal inhibitory concentration (IC50) of each compound (including berberine, barberry root extract, and H2O2), and the anti-apoptotic effects of all components were investigated using RT-PCR. Results: The SH-SY5Y cell viability increased in both groups exposed to 75 and 150 ppm barberry extract compared with that in the H2O2-treated group. The data showed that exposing SH-SY5Y cells to 30 ppm berberine significantly increased the cell viability compared with the H2O2-treated group; treatment with 150 and 300 ppm berberine and H2O2 significantly decreased the SH-SY5Y cell viability and was associated with berberine cytotoxicity. The mRNA levels of Bax decreased significantly under treatment with berberine at 30 ppm compared with the control group. A significant increase in Bcl-2 expression was observed only after treatment with the IC50 of berberine. The expression level of Bcl-2 in cells exposed to both berberine and barberry extracts was also significantly higher than that in cells exposed to H2O2. Conclusion: The outcomes of this study suggest that treatment of SH-SY5Y cells with barberry extract and berberine could suppress apoptosis by regulating the actions of Bcl-2 family members.

Effect of LED Light Quality and Intensity on Growth Characteristics of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.61-61
    • /
    • 2020
  • This experiment was carried out using artificial bed soil and LED in the plastic film house(irradiation time: 07:00-17:00/day). Seedlings(n=63 per 3.3 m2) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity(40-160 µmol/m2/s). Average air temperature from April to September according to the light intensity test was 20.4℃-20.9℃. Average artificial bed soil temperature was 20.1℃-21.7℃. The test area where fluorescent lamp was irradiated tended to be somewhat lower than the LED irradiation area. The chemical properties of the test soil was as follows. pH levels was 6.6-6.7, EC levels 0.9-1.3 dS/m and OM levels 30.6-32.0%. The available P2O5 contents was 73.3-302.3 mg/kg. Exchangeable cations K and Ca contents were higher than the allowable ranges and mg content was high in the fluorescent lamp treatment. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PPFD(Photosynthetic Photon Flux Density) value, illuminance and solar irradiation. Fluorescent lamp treatment had high illuminance value, but PPFD and solar irradiation were lower than LED intensity 40 µmol/m2/s treatment. The photosynthetic rate increased(2.0-3.8 µmolCO2/m2/s) as the amount of light intensity increased, peaking at 120 µmol/m2/s, and then decreasing. The SPAD (chlorophyll content) value decreased as the amount of light intensity increased, and was the highest at 36.1 in fluorescent lamp treatment. Ginseng germination started on April 5 and took 14-17 days to germinate. The overall germination rate was 68.8-73.6%. The growth of aerial parts(plant height etc.) were generally excellent in the treatment of light intensity of 120-160 µmol/m2/s. The plant height was 41.9 cm, stem length was 24.1 cm, leaf length was 9.8 cm and stem diameter was 5.6 mm. The growth of underground part (root length etc.) was the best in the treatment with 120 µmol/m2/s of light intensity. Due to the root length was long(24.8 cm) and diameter of taproot was thick(18.7 mm), the fresh root weight was the heaviest at 24.8 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping-off caused by Rhizoctonia solani occurred 0.6-1.5% and incidence ratio of rusty root ginseng was 30.8-62.3%. It is believed that the reason for the high incidence of rusty root ginseng is that the amount of field moisture capacity of artificial bed soil is larger than the soil. Leaf discoloration rate was 13.7-32.3%.

  • PDF

Characterization of the Gene Encoding Radish (Raphanus sativus L.) PG-inhibiting Protein

  • Hwang, Byung-Ho;Kim, Hun;Lim, Sooyeon;Han, NaRae;Kim, Jongkee
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.299-307
    • /
    • 2013
  • A radish (Raphanus sativus L.) polygalacturonase-inhibiting protein (PGIP) gene was cloned and compared to the PGIP gene (BrPGIP2) from Chinese cabbage (Brassica rapa ssp. pekinensis) in order to gain more information on controlling a disease and improving produce quality. To clone the radish PGIP gene, primers were designed based on conserved sequences of two PGIP genes (BnPGIP1 and BnPGIP2) from rape (B. napus L. ssp. oleifera), Chinese cabbage and Arabidopsis thaliana. PCR cloning was performed with cDNA from the stigma of radish 'Daejinyeoreum' as a template to confirm DNA fragments which were about 600 base pair in size. Sequence analysis revealed 84.1% homology with BrPGIP2 and 70.1% with BnPGIP1. DNA walking was conducted to confirm the open reading frame of 972 bp, and the gene was named RsPGIP1. RsPGIP1 consisting with 323 amino acids (aa) has a high leucine content (54/323) and contains 10 leucine-rich repeat domains, as do most BrPGIPs of Chinese cabbage. The gene expression of RsPGIP1 was induced by abiotic stresses and methyl jasmonate. It showed enrichment in the stigma and the primary root than a leaf. Cloning RsPGIP1 will aid to further apply practices on postharvest quality maintenance and disease control of the root.

The Mechanism of Lotus Root Extract (LRE) as Neuro-Protective Effect in Alzheimer Disease (AD) (연근(蓮根)의 신경 보호 효과 및 기전연구)

  • Hong, Seung-Chul;Lee, Chia-Hung;Kim, Sang-Heon;Lee, Jin-Hee;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.24 no.3
    • /
    • pp.309-320
    • /
    • 2013
  • Objectives : There is a possibility LRE as remedy in Alzheimer disease (AD), but it's nerve protection effect and mechanism have to be elucidate. In this research, we applied LRE on $A{\beta}_{25-35}$ pre-treated SH-SY5Y cells, to find out the nerve protection effect and mechanism in AD cell model. Methods : We tried to confirm that effect by experimenting with 20, 50, and $100{\mu}g/ml$ concentration of LRE as a medicine. Next experiment, we assessed damage effect which induced $A{\beta}_{25-35}$, known to cause AD, on SH-SY5Y cell. In addition, cellular viability test is executed under $H_2O_2$ treatment condition in a SH-SY5Y cell. Results : 1. In $A{\beta}_{25-35}$ treated SH-SY5Y cell, LRE exhibited an anti-phosphorylation effect about tau protein, JNK, and IKB. 2. LRE prevent nerve cell apoptosis, which indued $A{\beta}_{25-35}$ and oxidative stress, modify JNK engaged synaptic structure and $NF{\kappa}B$ induced p75-neurotrophin receptor polymorphism. Conclusions : We found that LRE prevented oxidative stress-induced cellular destruction, for example, increased SOD activity of $A{\beta}_{25-35}$ treated SH-SY5Y cell and reduced toxicity of oxygen free radical. Consequently, the ingredients of LRE have a role as a catalyzer for $A{\beta}_{25-35}$ clearance and as scavenger for active oxygen free radical.