• Title/Summary/Keyword: rooftop concrete

Search Result 21, Processing Time 0.028 seconds

A look at rooftop waterproofing methods that combine a circular adhesive insulated composite duplex exposure repellent with a airvent (원형 접착 절연형의 복합 복층형 노출 방수제와 탈기관을 결합한 옥상 방수 공법에 관한 고찰)

  • KIM, Yeong-Seok;JEON, Sang-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.236-237
    • /
    • 2021
  • In the waterproofing of the rooftop of reinforced concrete buildings, it is difficult to solve perfectly according to the proficiency of waterproofing materials, methods, and mechanics. Therefore, this study applies a Tricot Fabric Mesh to the behavior of the bottom concrete. In addition, it responds to the behavior of the concrete cracking, and the waterproofing and protective layer has developed a method to provide convenience for rooftop floor use by adhesion between the base and the waterproof layer with the use of high viscosity urethane to effectively move the surface deformation and surface vapor and install a airvent device on the wall.

  • PDF

A Study on the Performance Based Mix Design on Using Bottom Ash as Planting Concrete Aggregate through Applications of 6 Sigma Technique (6시그마 기법을 적용한 식재용 경량콘크리트 골재로서의 바텀애쉬 배합설계에 관한 실험적 연구)

  • Ahn, Hye-Ryeon;Oh, Jae-Hoon;Song, Yu-Mi;Huh, Young-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.247-250
    • /
    • 2012
  • As industrialization progresses is rapidly growing, the city of density and temperature is rising successively. It leads to the status of environmental issues. It is needed to develop process of planting concrete block using by Eco-materials for replacing to he existing rooftop light soil that imported. In this study, developing the process of planting lightweight block is researched on using applications of 6 Sigma technique. It makes process object improve standard by using statistical method. Also, there are suggestion that it is optimum mix design conditions and affection of experimental factors in matters of developing planting concrete block for rooftop greening.

  • PDF

Relationship between the Cultural History of Modern Japan and Rooftop Gardens

  • Yamada, Hiroyuki;Yabu, Shinobu
    • Proceedings of the Korean Institute of Landscape Architecture Conference
    • /
    • 2007.10b
    • /
    • pp.157-161
    • /
    • 2007
  • Full-scale ferro-concrete building technology came was introduced in Japan in Meiji $35{\sim}40(1902{\sim}1907)$ and heralding the beginning of urban modernization. On the roofs of these new architectural constructions, full-scale rooftop gardens were also developed. We consider that gardens established on the roofs of hotel and department stores created a new, modernized garden culture, which greatly influenced the early modern urban culture of Japan, the drama of which it conceived based on the impression in a rooftop garden is made. In this paper, we discuss the influence of Meiji-Era cultural and technological advances on rooftop gardens constructed during the Taisho $Era(1912{\sim}1926)$, as represented by the gardens of Kobe's Oriental Hotel, Tokyo's Mitsukoshi Department Store and Shimonoseki City's Akita Company. Photographic and print sources are utilized to analyze the design features and temporal changes of these pioneering rooftop gardens, as well as their influence on urban culture.

  • PDF

Analysis of Trends in Patent Applications for Rooftop Greening Techniques (옥상녹화 기술의 특허출원 동향분석)

  • Lee, Eun-Heui;Kang, Kyu-Yi;Na, Eun-Jung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.88-99
    • /
    • 2005
  • This research aimed to investigate the current trends of rooftop greening techniques of frequent use within and without Korea. It is also expected that this research will help developing new rooftop greening techniques appropriate for Korean environment. Data for this study have been collected from patent applications for rooftop greening techniques; the web sites of the Korean Intellectual Property Office as well as patent offices in Germany and Japan, where active researches on rooftop greening techniques are in progress. 168 applications within a period from the year of 1984 to December of 2004 were examined, among which Japan excelled with its 81 applications followed by Germany(54), Korea(31)and USA(2). In case of Japan, where more patent applications were found than in any other countries, applications for Plant Base(38) excelled others - System(36), Management(4) and Plant(3) in the number of applications. As for Germany, 25 cases were on Plant Base, 25 cases on System, and 4 cases on Plant; in Korea, 15 cases were on Plant Base, 11 cases on System, 3 cases on Plant and 2 cases on Management; in USA, 1 cases were on System and 1 cases on Plant. Overall, the total number of patent applications in three countries reaches 168 cases; among which Plant Base topped in all four countries, followed by 73 cases on System. Applications concerning Plant and Management totalled to 11 and 6 for each. In conclusion, most patents were concentrated on Plant Base and System while researches on Plant and Management still do not get as much attention as they deserve. Research and development of various techniques on Plant must be a precondition for the formation of diverse Bio-tops suitable for the environments of specific areas. Concrete researches on rooftop greening techniques will contribute to the improvement of urban ecosystem by developing more convenient and easily applicable techniques during the time of actual construction.

The Characteristics of Air Temperature according to the Location of Automatic Weather System (AWS 설치장소에 따른 기온 특성)

  • Joo, Hyong-Don;Lee, Mi-Ja;Ham, In-Wha
    • Atmosphere
    • /
    • v.15 no.3
    • /
    • pp.179-186
    • /
    • 2005
  • Due to several difficulties, a number of Automatic Weather Systems (AWS) operated by Korea Meteorological Administration (KMA) are located on the rooftop so that the forming of standard observation environment to obtain the accuracy is needed. Therefore, the air temperature of AWSs on the synthetic lawn and the concrete of the rooftop is compared with the standard observation temperature. The hourly mean temperature is obtained by monthly and hourly mean value and the difference of temperature is calculated according to the location, the weather phenomenon, and cloud amount. The maximum and the minimum temperatures are compared by the conditions, such as cloud amount, the existence of precipitation or not. Consequently, the temperature on the synthetic lawn is higher than it on the concrete so that it is difficult to obtain same effect from ASOS, on the contrary the installation of AWS on the synthetic lawn seem to be inadequate due to heat or cold source of the building.

A Study on Application of Exposure System using Waterproofing Sheets of Synthetic Polymer for Rooftop (옥상용 합성고분자 시트를 애용한 지붕노출 시스템 적용에 관한 연구)

  • Lee Sang Su;Kim Su-Ryon;Kwak Kyu-Sung;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.179-183
    • /
    • 2005
  • In apply roof waterproof system using of synthetic high polymer sheet for rooftop measure physical performance (tension$\cdot$tearing ability, temperature relativity, heating stretch performance, junction performance, wind resistance test) by various test environment condition waterproof test of structure and performance of construction work aspect, present suitable form of construction work under these environment. Also, wish to improve durability of concrete structure as that examine in priority about adhesion method and joint junction method with waterproof out surface, and present new direction about roof system application of waterproofing method for rooftop.

  • PDF

The Characteristics of Retention and Evapotranspiration in the Extensive Greening Module of Sloped and Flat Rooftops (저토심 경사지붕과 평지붕 녹화모듈의 저류 및 증발산 특성)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.107-116
    • /
    • 2013
  • This study was undertaken to investigate the characteristics of retention and evapotranspiration in the extensive greening module of sloped and flat rooftops for stormwater management and urban heat island mitigation. A series of 100mm depth's weighing lysimeters planted with Sedum kamtschaticum. were constructed on a 50% slope facing four orientations(north, east, south and west) and a flat rooftop. Thereafter the retention and evapotranspiration from the greening module and the surface temperature of nongreening and greening rooftop were recorded beginning in September 2012 for a period of 1 year. The characteristics of retention and evapotranspiration in the greening module were as follows. The water storage of the sloped and flat greening modules increased to 8.7~28.4mm and 10.6~31.8mm after rainfall except in the winter season, in which it decreased to 3.3mm and 3.9mm in the longer dry period. The maximum stormwater retention of the sloped and flat greening modules was 22.2mm and 23.1mm except in the winter season. Fitted stormwater retention function was [Stormwater Retention Ratio(%)=-18.42 ln(Precipitation)+107.9, $R^2$=0.80] for sloped greening modules, and that was [Stormwater Retention Ratio(%)=-22.64 ln(X)+130.8, $R^2$=0.81] for flat greening modules. The daily evapotranspiration(mm/day) from the greening modules after rainfall decreased rapidly with a power function type in summer, and with a log function type in spring and autumn. The daily evapotranspiration(mm/day) from the greening modules after rainfall was greater in summer > spring > autumn > winter by season. This may be due to the differences in water storage, solar radiation and air temperature. The daily evapotranspiration from the greening modules decreased rapidly from 2~7mm/day to less than 1mm/day for 3~5 days after rainfall, and that decreased slowly after 3~5 days. This indicates that Sedum kamtschaticum used water rapidly when it was available and conserved water when it was not. The albedo of the concrete rooftop and greening rooftop was 0.151 and 0.137 in summer, and 0.165 and 0.165 in winter respectively. The albedo of the concrete rooftop and greening rooftop was similar. The effect of the daily mean and highest surface temperature decrease by greening during the summer season showed $1.6{\sim}13.8^{\circ}C$(mean $9.7^{\circ}C$) and $6.2{\sim}17.6^{\circ}C$(mean $11.2^{\circ}C$). The difference of the daily mean and highest surface temperature between the greening rooftop and concrete rooftop during the winter season were small, measuring $-2.4{\sim}1.3^{\circ}C$(mean $-0.4^{\circ}C$) and $-4.2{\sim}2.6^{\circ}C$(mean $0.0^{\circ}C$). The difference in the highest daily surface temperature between the greening rooftop and concrete rooftop during the summer season increased with an evapotranspiration rate increase by a linear function type. The fitted function of the highest daily surface temperature decrease was [Temperature Decrease($^{\circ}C$)=$1.4361{\times}$(Evapotranspiration rate(mm/day))+8.83, $R^2$=0.59]. The decrease of the surface temperature by greening in the longer dry period was due to sun protection by the sedum canopy. The results of this study indicate that the extensive rooftop greening will assist in managing stormwater runoff and urban heat island through retention and evapotranspiration. Sedum kamtschaticum would be the ideal plant for a non-irrigated extensive green roof. The shading effects of Sedum kamtschaticum would be important as well as the evapotranspiration effects of that for the long-term mitigation effects of an urban heat island.

Effects of climate condition on concrete slab with modified-latex (외기조건이 개질된 라텍스 혼입콘크리트 슬래브 표면에 미치는 영향)

  • Cha, Hun;Kim, Dae-Geon;Choi, Sang-Hwan;Moon, Kyeong-Sik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.7-8
    • /
    • 2014
  • Latex-modified concrete using ready mix concrete (R-LMC) was developed for application of building construction project (specifically, the rooftop of a parking garage unable to use heavy equipments for bridge deck overlay) due to three major outstanding properties of R-LMC; bond strength, resistance of cracks at early age, and resistance of freezing and thawing. However, R-LMC at the placement stage is required to be sufficiently cured because R-LMC is very sensitive to rate of evaporation of surface moisture. This study focused on effects of different curing methods and climate condition on cracks on the surface of hardened R-LMC considering the chart of rate of evaporation of surface moisture from concrete provided by American Concrete Institute in manual for placement of latex modified concrete.

  • PDF

A Study on the Performance Evaluation Method of Waterproofing-Seal as Leakage Cracks Repairing Material using on the Underground Structure (지붕용 톱코팅재의 내구성 향상에 관한 성능 및 평가방법에 관한 기초적 연구)

  • Park, Jin-Sang;Kang, Hyo-Jin;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.517-520
    • /
    • 2006
  • The waterproofing of Building on the roof has been exposed more underground or the other part of waterproofing than environmental factor(solar heat, UV, salt, acid rain, wind, temperature, snow, rain, etc.) or physical factor. So it must be have a waterproofing performance and it has a special technique for the maintaining of concrete durability. Therefore, exposed waterproof layer has to protected from UV, solar heat, rain and the outside environment also, to endurance durability methods spread face plate topcoat material on the waterproof layer. But, actuality faceplate waterproof layer of topcoat materials are unbearable to UV, solar heat and moisture etc. and it doesn't have adhesion with waterproof layer in the middle. So it happens to crack, separating and heaving etc. Therefore, in the study, we will suggest that using of the exposed roof waterproof layer topcoat materials test method manage rooftop waterproof layer for the durability and the stability.

  • PDF

A study of Building Mix-Design and Construction Process to Reduce the Combined Deterioration of Plain Concrete. (옥상 무근콘크리트 복합열화 방지를 위한 시공 프로세스 구축 및 배합 설계에 관한 연구)

  • Kim, Dae-Geon;Lee, Woo-Geun;Kang, Ye-Jin;Yeo, Dong-Kyu;Kim, Do-Hun;Lee, Dong-Oun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.85-86
    • /
    • 2018
  • In the case where the building's rooftop was laid without any foundation, the combined deterioration, such as the repetition of shrinkage and expansion caused by temperature changes, caused further cost generation and damage. To prevent this, the concrete mixing design and construction process shall be established to resist combined deterioration.

  • PDF