• Title/Summary/Keyword: roof green system

Search Result 127, Processing Time 0.029 seconds

A Study of the Proposes of GRS Prototype for various purpose achievement and it's Efficiency Comparative Experiment (Green Roof System의 다양한 성능 추구를 위한 공법 제시 및 성능 비교 실험 연구)

  • Jang, Dae-hee;Kim, Hyeon-soo;Lee, Keon-Ho;Park, Chang-Young
    • KIEAE Journal
    • /
    • v.6 no.2
    • /
    • pp.59-66
    • /
    • 2006
  • Green Roof Systems are embossed that realize ecological architecture as a substantially alternative plan. So, a Purpose of the study is seeking to optimize expectation effect through the Green Roof System. we set possible object and propose the prototype on the basis of the existing Green roof System technologies. We visualize a proposed Prototype apply various materials and methods. and we analyse the effects of Green Roof System upon our City climate with use energy efficiency comparison the Green roof system with the Concrete Rooftop. We'll Provide the low data for The prospects of City climate improvement through the a ripple effect on Green Roof System and for activation of Green Roof Technology.

A Study on Correlation between Improvement in Efficiency of PV and Green roof of Public Building (공공건물 옥상녹화와 설치태양광(PV)의 효율향상 상관관계 연구)

  • Lee, Eung Jik
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.111-118
    • /
    • 2013
  • This study aims to investigate advantages of complex installation of green roof and PV system in a public building, to analyze the impact of green roof on the efficiency of PV power generation, and to consider the correlation between green roof and PV power generation. When the temperature and power generation of the modules installed in the green roof and non-green roof of the public building were measured for 3 days, the average temperature of the green roof was 23.6 degrees, and it was 36.1 degrees in the non-green roof which increased by nearly 53%. Overall, the module temperature in the green roof was lower. On the other hand, in relation to the PV generation depending on temperature reduction during the same period, the mono-crystalline module and the poly-crystalline module in the green roof showed an increase in generation at nearly 222.2W and 341.6W, and the efficiency rose by 5.5% and 6.2%, respectively, compared to the modules in the non-green roof. Therefore, it is analyzed that green roof has a positive influence on PV power generation. Finally shows the efficiency of the installed on the Green Roof PV system (complex Installation) higher than on the concrete roof PV system. Thus, the complex PV systems as well as the usual benefits of green roofs will provide greater synergies.

A Study on the Development of Prototype for Green Roof System in Korea (한국형 Green Roof System 개발을 위한 Proyotype 제안)

  • Kim, Hyen-Soo
    • KIEAE Journal
    • /
    • v.3 no.3
    • /
    • pp.3-11
    • /
    • 2003
  • The purpose of this study is to develope an available outdoor insulation construction for the green roof system in Korea. On its own economical and structural problems of constructional risk, the typical outdoor insulation construction on the korean spot does not function efficiently with the green roof. Therefore, this study consists of four main contents as follows: 1. The objectives of the study are established by analysing the problems of the typical in- and outdoor roof insulation system in korea. 2. The foreign outdoor insulation systems for the green roof are clarified to find out an acceptable prototype for Korea. 3. According to loadtest, the prototype, which has a waterproof on the thermal insulation, is tested to demonstrate the structural safety. 4. The U-value test of the prototype on KS F 2277 brings the thermal performance of the green roof system, which can influence the thickness of the insulation.

A Experimental Study on Effluence Characteristic of the Rainfall in the IRMA Green Roof System of KICT (역지붕 녹화옥상시스템[KICT-GRS2004]의 우수유출 특성에 관한 실험적 연구)

  • Jang, Dae-hee;Kim, Hyeon-soo;Lee, Keon-ho;Moon, Soo-young
    • KIEAE Journal
    • /
    • v.5 no.2
    • /
    • pp.11-18
    • /
    • 2005
  • The Purpose of this study is development and analysis of Effluence Characteristic of the Rainfall in the IRMA Green Roof System(developed in KICT) Plus 50 program is an internal research project at KICT(Korean Institute of Construction Technology) which has it as an object ; to lengthen the building's life 50-year or more and reduce energy conception 50% than present. Green roof system is one of the most important theme in the Plus 50 program. Generally, a Green Roof System has a positive effect on the thermal conductivity in winter, the micro cooling effect on building and city by evaporation in summer, the flood-control effect by runoff-reduction or the treated rainwater-quality of green roof system and so on. However, inspection of the physical effect of green roof system does not consider in Korea. Above all, long-term monitoring and a whole observation of green roof system is needed to probate the effect. So a new experimental method could be tried in this research, which is never attempted in Korea. The measurement by a bucket with a great volume, 1L, gives a new dimension of measuring green roof effect to measure the permanent running flood from a wide roof. This offers a reasonable result on a long-term measuring of a running water. Additionally, the thermal behavior of the IRMA(Insulated Roof Membrane Assembly), known in the western europe as a reasonable solution at green roof system by economical benefits and easy construction, would be experimented.

Current Status and Issues of Green Roof Technology in Korea (한국옥상녹화기술의 현황과 과제)

  • Yang, Byoung-E
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • The purpose of the study is to review current status of green roof technology and to suggest the issues and solutions related with the technological problems of green roof in Korea. The scope of the study is limited to the extensive green roof which requires low maintenance. Technological issues related with green roof include soil, water proofing, water drain, vegetation and maintenance. Several solutions to invigorate green roof technology were suggested as follows; 1)implementation of technical standard for green roof and technology certification system, 2) development of suitable raw materials for green roof, 3) construction guidelines and uniform construction specification, 4) formulation of city ordinance for green roof, and 5) exchange program with foreign green roof organizations.

Water conservation effect of concave greenroof system and its influential factors (오목형 옥상녹화의 수자원확보효과와 영향인자)

  • Baek, So-Young;Han, Moo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.165-169
    • /
    • 2015
  • Green roofs are gaining much interest in many cities around the world due to its multi-purpose effects of water conservation, flood mitigation and aesthetic benefits. However it may cause additional water demand to maintain green plants, which may intensify the current and future water shortage problems. While ordinary concrete roofs and normal green roof drains off rain water, concave green roof system can retain rain water because of its water holding capability. In this study, the water conservation effect of concave green roof was compared to normal roof on #35 building in Seoul National University, Seoul, Korea. For seven rainfall events the amount of stored rainwater and runoff were measured and proved water conservation effect of the concave green roof system. The concave green roof system of which area is 140m2 showed effect of water conservation from 1.8ton to 7.2ton and the most influence factors on water conservation in green roof are rainfall and antecedent day. If this concave green roof is applied to many buildings in the cities, it is expected as a way to water conservation through rainfall storage.

Heating and Cooling Energy Conservation Effects by Green Roof Systems in Relation with Building Location, Usage and Number of Floors

  • Son, Hyeong Min;Park, Dong Yoon;Chang, Seong Ju
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.11-19
    • /
    • 2014
  • Building energy consumption takes up almost 25% of the total energy consumption. Therefore, diversified ways, such as improving wall and window insulation, have been considered to reduce building energy consumption. Recently, green roof system has been explored as an effective alternative for dealing with reducing heating and cooling energy, thermal island effect and improving water quality. However, recent studies regarding a green roof system have only focused on building energy reduction without considering the applied usage, location, and story of the green roof system. Therefore, this study pays attention to the heating and cooling energy in relation to the applied usage, location, and story of a green roof system for investigating its impact on energy reduction. The result of simulations show that the reduction in heating energy consumption is higher when applied to Cherwon-gun province which has a continental climate condition, compared to the city of Busan that is distinguished by its warm climate. Cooling energy saving turns out to be higher when the green roof system is applied to Busan in comparison with Cherwon. As for the applied usage or function of the building, residential space acquires the highest heating and cooling energy saving effect rather than commerce, educational or office space because of HVAC's running time based on usage. When it comes to the story of the green roof, both heating and cooling energy saving become the highest when the green roof is applied to single-storied buildings. The reason is that single story building is affected by the ground largely. Generally, the variations of heating energy consumption are larger than the cooling energy consumption. The outcome of the simulations, when a green roof system is applied, indicates that the energy consumption reduction rate is dynamically responding to the applied usage, location, and story. Therefore, these factors should be counted closely for maximizing the reduction of energy consumption through green roof systems.

A study on the effect that the green roof has on the performance of PV module (옥상녹화가 PV모듈 발전량에 미치는 영향 고찰)

  • Yoo, Dong-Cheol;Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • This study aims to examine the effect of the combined application of green roof and PV system on the PV efficiency by measuring the temperature and performance of PV module in order to reduce the temperature on the roof using roof planting system and determine the potential of efficient increase in solar-light power generation. In the experimental methodology, either monocrystalline or polycrystalline PV module was installed in green roof or non-green roof, and then the surface temperature of PV was measured by TR-71U thermometer and again the performance, module body temperature, and conversion efficiency were measured by MP-160, TC selector MI-540, and PV selector MI-520, respectively. As a result, the average body temperature of monocrystalline module was lower by $6.5^{\circ}C$ in green roof than in non-green roof; that of polycrystalline module was lower by $8.8^{\circ}C$ in green roof than in non-green roof. In the difference of generation, the electricity generation of monocrystalline module in green roof was 46.13W, but that of polycrystalline module was 68.82 W, which indicated that the latter produced 22.69W more than the former.

A Consideration of the Correlation Between the Change of Surface Temperature on the Roof and the Adoption of the Green Roof vs Non Green Roof -Application in DaeJeon Area- (옥상녹화와 비 옥상녹화 표면의 온도변화 상관관계 고찰 -대전지역을 중심으로-)

  • Lee, Eung-Jik;Kim, Jun-Hui
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.134-140
    • /
    • 2012
  • With rapid modernization and industrialization, many urban areas are becoming overcrowded at a rapid pace and such urban ecological problems as heat island effect are becoming serious due to the reduced green zones resulted from the indiscriminate development. To solve this problem, ecological park, constructed wetlands, and greening on the elevation, balcony, and roof of a building that have the structure and function very close to the state of nature are currently being promoted at the urban or regional level. Especially green roof will be able to not only provide the center of a city with a significant portion of green area but also help to relive heat island effect and improve micro climate by preventing concrete of a building from absorbing heat. According to a recent study, the temperature of green roof in the summer season shows a lower temperature than the outdoor temperature, but inversely the concrete surface shows a higher temperature. Accordingly, this study measured the surface temperature of buildings with green roof in Daejeon area in order to determine how the green roof system would have an impact on the distribution of surface temperature and did a comparative analysis of the distribution of the surface temperature of green roof vs non-green roof based on these theoretical considerations. As a result, it was found that the surface temperature of green roof was lower by $4{\sim}7^{\circ}C$ than that of non-green roof. This is expected to contribute to the mitigation of urban heat island effects.

Study on Surface Temperature Change of PV Module Installed on Green Roof System and Non-green Roof System (옥상녹화와 비 옥상녹화 평지붕에 설치 된 PV모듈의 표면온도 변화 고찰)

  • Yoo, Dong-Chul;Lee, Eung-Jik;Lee, Doo-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.214-219
    • /
    • 2011
  • Today, various activities to save energy are being conducted around the world. Even in our country, carbon reduction policy is being conducted for low carbon green growth and with this movement, effort to replace energy sources by recognizing the problems on environment pollution and resource exhaustion due to the indiscrete usage of fossil fuel is being made. Therefore, active study on renewable energy is in progress as part of effort to replace the energy supply through fossil fuel and solar ray industry has rapidly developed receiving big strength of renewable energy policies. The conclusion of this study measuring the surface temperature change of single crystal and polycrystalline PV module in green roof system and non-green roof system aspect are as follows. There was approximately $4^{\circ}C$ difference in PV module temperature in green roof system and non-green roof system aspect and this has the characteristic to decrease 0.5% when the temperature rises by $1^{\circ}C$ when the front side of the module is $20^{\circ}C$ higher than the surrounding air temperature following the characteristic of solar cells. It can be concluded that PV efficiency will be come better when it is $4^{\circ}C$ lower. Also, in result of temperature measurement of the module back side, there was $5^{\circ}C$ difference of PV module installed on the PV module back side and green roof system side on the 5th, $3^{\circ}C$ on the 4th, $2^{\circ}C$ on the 5th to show decreasing temperature difference as the air temperature dropped, but is judged that there will be higher temperature difference due to the evapotranspiration latent heat effect of green roof system floor side as the temperature rises. Based on this data, it is intended to be used as basic reference to maximize efficiency by applying green roof system and PV system when building non-green roof system flat roof.

  • PDF