• Title/Summary/Keyword: rollover

Search Result 125, Processing Time 0.026 seconds

Design of a Robust Estimator for Vehicle Roll State for Prevention of Vehicle Rollover (차량 전복 방지를 위한 강건한 롤 상태 추정기 설계)

  • Park, Jee-In;Yi, Kyoung-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1103-1108
    • /
    • 2007
  • This paper describes a robust model-based roll state estimator for application to the detection of impending vehicle rollover. The roll state estimator is based on a 2-D bicycle model and a roll model to estimate the maneuver-induced vehicle roll motion. The measurement signals are lateral acceleration, yaw rate, steering angle, and vehicle speed. Vehicle mass is adapted to obtain robust performance of the estimator. Computer simulation is conducted to evaluate the proposed roll state estimator by using a validated vehicle simulator. It is shown that the roll state estimator shows robust performance without exact vehicle mass information.

  • PDF

Comparison among Active Roll Controllers for Rollover Prevention and Ride Comfort Enhancement (승차감 향상과 차량 전복 방지를 위한 능동 롤 제어기의 성능 비교)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.828-834
    • /
    • 2014
  • This paper presents a comparison among three types of approaches to an ARC (Active Roll Control) with an AARB(Active Anti-Roll Bar) for a vehicle system. Lateral acceleration and road profile are considered as disturbance. The ARC is designed with an LQ SOF (Linear Quadratic Static Output Feedback) control, $H_{\infty}$ control and SMC (Sliding Mode Control). These approaches are compared in terms of rollover prevention and ride comfort. For comparison, Bode plot analysis based on linear model and frequency response analysis based on CarSim simulation are performed.

A Study on the Crashworthiness for Passenger Compartment of High Speed Train (고속전철 승객 탑승부의 충돌 안전도 평가에 관한 연구)

  • 김상범;김헌영;박제승;한동철
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.198-204
    • /
    • 2001
  • Train crashes involve complex interaction between deformable bodies in multiple collisions. The purpose of this study is to suggest the effective analytical procedure using hybrid model for the crashworthiness of motorized trailer of high speed train. The hybrid approach, with very short modeling times and reduced computation times to extract the global behaviour and to perform a pre-optimization of the considered structure. Firstly, various types of crash events are investigated and the conditions for numerical simulation are defined. In this paper, the structural crashwonhiness of Korean High Speed Train trailer was examined through FE analysis. Crash analyses on energy absorbing part and safety zone were carried out to determine each section force. Rollover analysis was performed to observe the amount of intrusion in the passenger's area in case of rollover accident.

  • PDF

A Study on the Highway Ramp Section for Simulation of Commercial Vehicle ESC Assesment (상용 ESC 평가 시뮬레이션을 위한 국내 고속도로 진출입로 연구)

  • Lee, Hongguk;Park, Joongyoung;Chang, Kyungjin;Suh, Leejung;Yoo, Songmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.23-28
    • /
    • 2014
  • Commercial vehicle ESC assessment for curvature road was conducted. The previous study of ESC activation condition for losing controllability utilizing the test protocols of double lane change and sine with dwell method was conducted without considering the geometric complexity of roadway design. Since critical rollover accidents were frequently observed in the exit ramp zone, variety of curve, slope and bank have been added for analysis conditions. Detailed feature of the ramp including location, dimension and design characteristics have been analyzed from the typical trumpet type ramp design. Analyzing accident data from 2008, two specific ramps have been selected due to their complexity in design and severity in steering operation.

Study of Safety Tolerance for Wheelchair Bus Crashworthiness (휠체어 탑승 개조버스의 안전도 연구)

  • Shin, Jaeho;Kang, Byungdo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.63-68
    • /
    • 2019
  • The Korean traffic systems for transportation vulnerable are still under development and their social life are limited even if the traffic environment systems are developed consistently. To secure his/her mobility right, it has been required to set up the particular system for the traffic welfare, for example the express and intercity bus operations for wheelchair users. The express and intercity bus development for wheelchair users based on the original bus model has been performed. This study has investigated the safety tolerance for the bus stiffness, rollover and side impact characteristics to ensure occupant safety using the finite element models. The wheelchair bus model showed the improved crashworthiness according to the partially reinforced structure and better safety tolerance for the wheelchair users.

The characteristics of bending collapse of aluminum/GFRP hybrid tube (알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성)

  • 송민철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

Safety belt effectiveness versus crash types

  • Park, S.G.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.15-25
    • /
    • 1994
  • Based on Fatal Accident Reporting System (FARS) data, safety belt effect- tiveness in preventing fatalities is investigated for the following five types of crashes: frontal, left, rear, right, and rollover. Passenger cars containing two occupants, a driver and a right front passenger, are included in this analysis. For each crash type, these cars containing the two occupants are classified into four categories according to the safety belt usage categories for the two front seat occupants, namely, both belted, both unbelted, and either one was belted but not both. Relative risks of driver and right front passenger fatalities are compared among these four cases. For each crash type, two independent estimates of safety belt effectiveness are obtained for drivers and for right front passengers. The weighted average of the two estimates is calculated for drivers and for right front passengers for the five crash types. Using FARS data starting 1978 throught 1983, safety belts are more effective in rollover accidents than in frontal collisions. In rollover accidents, safety belt effectiveness estimate for drivers is $68%{\pm} 6% $ and that for right front passengers is $71%{\pm}6% $ , in which the error limits indicate one standard error. Sfety belt effectiveness estimates for drivers and right front passengers involved in frontal collisions are $41%{\pm} 9% $ and $37%{\pm} 10% $ , respectively. For left and right sided collisions and for both drivers and right-front-passengers, none of the four estimates are significantly different from 0%, statistically : however, when left and right sided collisions are combined with far sided occupants(drivers involved in right sided collisions and right front passengers involved in left sided collisions) safety belt effectiveness is significant, $38%{\pm} 12% $ . For rear collisions, the estimate for drivers shows statistically significant positive effect, $60%{\pm}23% $ . while for right-front-passengers the estimate is not significantly different from 0%. These results show that a safety belt is an effective restraint system not only in frontal crashes but also in a variety of crashes.

  • PDF

Real-Time Vehicle Mass Estimator for Active Rollover Prevention Systems (차량 전복 방지 장치를 위한 실시간 차량 질량 추정 시스템)

  • Han, Kwang-Jin;Kim, In-Keun;Kim, Seung-Ki;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.673-679
    • /
    • 2012
  • Vehicle rollover is a serious kind of accident, particularly for sport utility vehicles, and its occurrence can be minimized by utilizing active rollover prevention systems. The performance of these protection systems is very sensitive to vehicle inertial parameters such as the vehicle's mass and center of mass. These parameters vary with the number of passengers and in different load situations. In this paper, a unified method for vehicle mass estimation is proposed that takes into account the available driving conditions. Three estimation algorithms are developed based on longitudinal, lateral, and vertical vehicle motion, respectively. Then, the three algorithms are combined to extract information on the vehicle's mass during arbitrary vehicle maneuvering. The performance of the proposed vehicle mass estimation method is demonstrated through real-time experiments.

Design of Rollover Prevention Controller Using Game-Theoretic Approach (미분게임 이론을 이용한 차량 전복 방지 제어기 설계)

  • Yim, Seongjin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1429-1436
    • /
    • 2013
  • This study presents an approach for designing a vehicle rollover prevention controller using differential game theory and multi-level programming. The rollover prevention problem can be modeled as a non-cooperative zero-sum two-player differential game. A controller as an equilibrium solution of the differential game guarantees the worst-case performance against every possible steering input. To obtain an equilibrium solution to the differential game with a small amount of computational effort, a multi-level programming approach with a relaxation procedure is used. To cope with the loss of maneuverability caused by the active suspension, an electronic stability program (ESP) is adopted. Through simulations, the proposed method is shown to be effective in obtaining an equilibrium solution of the differential game.