• Title/Summary/Keyword: roll deformation

Search Result 197, Processing Time 0.021 seconds

Treatment of Contact between Roll/Roll and Roll/Strip for Rolling Process Simulation (압연공정해석을 위한 판과 롤의 접촉 경계면 처리)

  • 김태효;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.156-159
    • /
    • 2003
  • Surface normal vector and surface velocity are very important parameters to simulate rolling processes precisely. In this study, Local displacement functions are constructed for each node on the contact surface and parameters are found by the least square fitting of displacement on the neighbor nodes. Deformation gradient tensor is calculated from the displacement function and surface normal vector and velocity also can be derived. Flat rolling simulation model is presented on the basis of the suggested contact scheme. Series of rolling process simulation are carried out and the results are compared with the experiments.

  • PDF

Shape Prediction in Eulerian Analysis of Three-Roll-Stand Shape Rolling (Three-Ro II-Stand 형상압연의 오일러리안 해석에서 형상예측)

  • 이용신;나경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.328-331
    • /
    • 2001
  • Shape changes of a workpiece in an Eulerian Finite Element analysis for the steady state. three-roll-stand shape rolling are modelled. Although an Eulerian analysis has many advantages for the steady state rolling problems, it necessitates an assumption about the unknown shape of the control volume. In almost all cases. the assumed control volume does not match the final shape and the control volume should be updated. This update can be accomplished by performing a free surface correction. The final shape of a material point, which has a spherical shape at the inlet, can be also predicted by integrating a deformation gradient along a stream line. Analyses of three-roll-stand shape rolling is in detail examined.

  • PDF

3D Finite Element-based Study on Skin-pass Rolling - Part II : Development of the Model (3차원 유한요소법에 기초한 조질 압연 공정 해석 - Part II : 모델 개발)

  • Yoon, S.J.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.136-140
    • /
    • 2016
  • Although the finite element method is a good tool to analyze skin-pass rolling, it is hard to be applied in the field because of its long calculation time. In the current study, simple numerical models were developed for the prediction of roll force and residual stress profiles along the strip width. These models are based on finite element analysis and a coupled solution of Sims’ equation and Hitchcock’s formula. The results indicate that plastic strains can be represented as in simple equations of the deformed roll profile and the initial thickness of the strip.

Analysis of Billet Rolling in a Continuous Mill using Idle Vertical Stands

  • Laila S. Bayoumi;Lee, Youngseog
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.762-769
    • /
    • 2004
  • An analytical approach is presented to investigate the deformation characteristics of billets in a continuous billet mill using power driven horizontal stands and idle vertical stands. The analysis is validated by comparison to the experimental results in a previously published work. The analytical results have shown that, apart from the problems of slip and buckling of billet, there are some shortcomings involved in this method. Compared to conventional rolling with all driven stands, the roll load for idle vertical stands and the rolling torque for horizontal stands are almost doubled. The billet is severely stressed within the roll-bite of idle vertical stands and the overall rolling power has increased by one third of that for conventional rolling. Theseshortcomings impair the feasibility of industrial application of idle vertical stand rolling method.

Prediction of AGS Distribution and Analysis of Rescrystallization Behavior in 3-roll Mill (3-롤 압연 오스테나이트 결정립도 분포 예측 및 재결정 거동 분석)

  • 권혁철;김수영;임용택;이영석;우종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.169-172
    • /
    • 2002
  • Recently, the application of 3-roll mill is increasing, because of its flexibility in spread control and stand arrangements due to its compact size. But deformation characteristics and microstructural change in the process is not well known. In this study, austenite grain size (AGS) predictions were made by isothermal FE analyses and a microstructure model available in the literature. From this study, the effect of draught on the AGS characteristics was analyzed based on the divided zones of two major recrystallization behaviors.

  • PDF

A Study on the Springback of Sheet Characteristics for Roll forming Analsys (판재 특성에 따른 롤 성형 해석시 스프링백 연구)

  • Jung, J.H.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.;Son, S.M.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.300-301
    • /
    • 2007
  • In this study, it is investigated that sheet characteristics of high strength steel sheets and effect of springback. High strength steel sheets has got attention in automobile industry of high strength and high formability. Springback is a common phenomenon in sheet metal forming, caused by the elastic recovery of the internal stresses after removal of the tooling. However, the information in deformation behavior of high strength steel sheets, including bending and sheet characteristics and springback, is not enough until now. In this research, the V-bending experiment and analysis have been done to obtain the information of springback of high strength steel sheets. Tensile test for high strength steel sheets was done to got tensile properties of elastic modulus and flow stress of the material. It analyzed springback according to the sheet characteristics with using roll-forming model. FE-Simulation used DEFORM-$3D^{TM}$.

  • PDF

Investigation of bonding properties of Al/Cu bimetallic laminates fabricated by the asymmetric roll bonding techniques

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • In this study, 2-mm Al/Cu bimetallic laminates were produced using asymmetric roll bonding (RB) process. The asymmetric RB process was carried out with thickness reduction ratios of 10%, 20% and 30% and mismatch rolling speeds 1:1, 1:1.1 and 1:1.2, separately. For various experimental conditions, finite element simulation was used to model the deformation of bimetallic Al/Cu laminates. Specific attention was focused on the bonding strength and bonding quality of the interface between Al and Cu layers in the simulation and experiment. The optimization of mismatch rolling speed ratios was obtained for the improvement of the bond strength of bimetallic laminates during the asymmetric RB process. During the finite element simulation, the plastic strain of samples was found to reach the maximum value with a high quality bond for the samples produced with mismatch rolling speed 1:1.2. Moreover, the peeling surfaces of samples around the interface of laminates after the peeling test were studied to investigate the bonding quality by scanning electron microscopy.

FEM Analysis on Deformation Inhomogeneities Developed in Aluminum Sheets During Continuous Confined Strip Shearing (알루미늄 판재구속전단가공에서 형성되는 불균일 변형의 유한요소해석)

  • 최호준;이강노;황병복;허무영
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • The strain state during the continuous confined strip shearing (CCSS) based on ECAP was tackled by means of a two-dimensional FEM analysis. The deformation of AA 1100 sheet in the CCSS apparatus was composed of three distinct processes of rolling, bending and shearing. The pronounced difference in the friction conditions on the upper and lower roll surfaces led to the different variation of the strain component ${epsilon}_13$ throughout the thickness of the aluminum sheet. Strain accompanying bending was negligible because of a large radius of curvature. The shear deformation was concentrated at the corner of the CCSSchannel where the abrupt change in the direction of material flow occurred. The process variables involving the CCSS-die design and frictions between tools and strip influenced the evolution of shear strains during CCSS.

Analysis of edge drop and development of numerical formula for edge drop control of cold rolled sheet (냉연판의 엣지드롭 해석 및 제어용 수식모델 개발)

  • Song, Gil-Ho;Park, Hae-Du;Jin, Cheol-Je;Sin, Seong-Gap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.723-730
    • /
    • 1998
  • With the introduction of edge drop control system in Tandem Cold Rolling Mill, it is necessary to develop te numerical expression for the set-up and edge drop automatic control of cold rolled sheet. As a first step we developed a simulation program which predicts profile and the amounts of edge drop at the delivery side of each stand by using roll deformation anlysis with the slit roll model. And by using the program the effect of various rolling conditions on edge drop was investigated. As a result the relations were obtained between the amounts of edge drop and rolling conditions. Based on above relations, the numerical expression was developed for the set-up and automatic control of edge drop by multi-regression of simulation results for the variation of edge drop amount with each rolling condition.

Roll Force Prediction of High-Strength Steel Using Foil Rolling Theory in Cold Skin Pass Rolling (고강도강의 냉간 조질 압연 시 호일 압연이론을 이용한 압연하중의 예측)

  • Song, Gil Ho;Jung, Jae Chook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.271-277
    • /
    • 2013
  • Skin pass rolling is a very important process for applying a certain elongation to a strip in the cold rolling and annealing processes, which play an important role in preventing the stretching of the yield point when the material is processed. The exact prediction of the rolling force is essential for obtaining a given elongation with the steel grade and strip size. Unlike hot rolling and cold rolling, skin pass rolling is used to apply an elongation of within 2% to the strip. Under a small reduction, it is difficult to predict the rolling force because the elastic deformation behavior of the rolls is complicated and a model for predicting the rolling force has not yet been established. Nevertheless, the exact prediction of the rolling force in skin pass rolling has gained increasing importance in recent times with the rapid development of high-strength steels for use in automobiles. In this study, the possibility of predicting the rolling force in skin pass rolling for producing various steel grades was examined using foil rolling theory, which is known to have similar elastic deformation behavior of rolls in the roll bite. It was found that a noncircular arc model is more accurate than a circular model in predicting the roll force of high-strength steel below TS 980 MPa in skin pass rolling.