• Title/Summary/Keyword: rocket experiment

Search Result 103, Processing Time 0.027 seconds

CALIBRATION PROCESS OF THE COSMIC INFRARED BACKGROUND EXPERIMENT (적외선 우주배경복사 관측 실험 검교정)

  • Lee, D.H.;Nam, U.W.;Kim, G.H.;Pak, S.;Zemcov, M.;Bock, J.J.;Battle, J.;Sullivan, I.;Mason, P.;Tsumura, K.;Matsumoto, T.;Matsuura, S.;Renbarger, T.;Keating, B.
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.169-175
    • /
    • 2007
  • The international cooperation project CIBER (Cosmic Infrared Background ExpeRiment) is a rocket-borne instrument, of which the scientific goal is to measure the cosmic near-infrared extra-galactic background to search for signatures of primordial galaxy formation. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. Currently, all the subsystems have been built, and the integration, testing, and calibration of the CIBER system are on process for the scheduled launch in June 2008.

Hydrocarbon Fuel Heating Experiments Simulating Regeneratively Cooled Channels of LRE Combustor (로켓엔진 연소기 재생냉각채널을 모사한 탄화수소계 연료가열시험)

  • Lim, Byoung-Jik;Lee, Kwang-Jin;Kim, Jong-Gyu;Yang, Seung-Ho;Kim, Hui-Tae;Kang, Dong-Hyuk;Kim, Hong-Jip;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.78-84
    • /
    • 2007
  • In the regeneratively cooled combustion chambers of liquid rocket engine using hydrocarbon fuels, coking occurs as the wall temperature increases which results in compounds deposition on the wall of cooling channels. This phenomenon reduces cooling capability of the coolant which finally causes damage to the combustor by overheating of the chamber wall. In this paper, experiment results using an electrical heating equipment to simulate the regeneratively cooled channel are introduced and based on the results the compatibility of copper alloy with hydrocarbon fuel Jet A-1 is investigated.

INTERNATIONAL COOPERATION OF THE COSMIC INFRARED BACKGROUND EXPERIMENT (적외선 우주배경복사 관측 실험 국제 공동 연구)

  • Lee, D.H.;Nam, U.W.;Lee, S.;Jin, H.;Yuk, I.S.;Kim, K.H.;Pak, S.
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.21-26
    • /
    • 2006
  • A Korean team (Korea Astronomy and Space Science Institute, Korea Basic Science Institute, and Kyung Hee University) takes part in an international cooperation project called CIBER (Cosmic Infrared Background ExpeRiment), which has begun with Jet Propulsion Laboratory (JPL) in USA and Institute of Space and Astronautical Science (ISAS) in Japan. CIBER is a rocket-borne instrument, of which the scientific goal is to measure the cosmic near-infrared extra-galactic background to search for signatures of primordial galaxy formation. CIBER consists of a wide-field two-color camera, a low-resolution absolute spectrometer, and a high-resolution narrow-band imaging spectrometer. The Korean team is in charge of the ground support electronics and manufacturing of optical parts of the narrow-band spectrometer, which will provide excellent opportunities for science and technology to Korean infrared groups.

Thrust Loss of Propulsion System with Scarfed Nozzle (절삭 노즐 적용 추진기관의 추력 손실)

  • Lee, Jeongsub;Park, Jaebum;Lee, Sangyon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1108-1111
    • /
    • 2017
  • The nozzle exit shape is scarfed according to the external shape of missile when the nozzle axis should be canted from missile axis due to missile system application. There is inevitable thrust loss for the scarfed nozzle comparing to non-scarfed nozzle. The numerical analysis is necessary to calculate the thrust loss in design process, and ground tests of rocket motor were performed to verify the calculation results. From the comparison of non-scarfed nozzle and scarfed nozzle experiment results, the thrust loss from calculation was about 16.6% and that from experiments was about 15.0%.

  • PDF

Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

  • Seo, Mansu;Park, Hana;Yoo, DonGyu;Jung, Youngsuk;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.64-69
    • /
    • 2014
  • Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid propellant stored in space is proven with good measurement accuracy.

Study on the Experiment of the Floating Ring Seal with Bump Foil for High Pressure Turbopump (범프 포일을 장착한 고압 터보펌프용 플로팅 링 실의 실험에 관한 연구)

  • Kim Kyoung-Wook;Kim Chang-Ho;Ahn Kyoung-Min;Lee Sung-Chul;Lee Yong-Bok
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.105-111
    • /
    • 2006
  • The floating ring seal which is used in the high pressure turbo pump is frequently used in the oxidizer pump and the fuel pump of the turbo pump of the liquid propulsion rocket, because it is able to minimize clearance to decrease the leakage flow rate. Compared with contact seal, the floating ring seal has advantage of minimizing clearance without rubbing phenomenon. But, the floating ring seal has a tendency to increase instability in operating condition in the high speed region. In this research, we devised floating ring seal which is inserted bump in the outer surface in order to improve the stability in the high speed region. Through this work, we expect to improve stability of floating ring seal with increasing the direct damping coefficient of seal and decreasing the eccentricity ratio.

A Study on the Selection of Forward Flow Forming Conditions with Inconel718 Tube for Mortar Barrel Manufacturing (박격포 포신 제작을 위한 Inconel718 소재의 전진 유동성형 조건 선정에 관한 연구)

  • Ko, Se-Kwon;Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.51-59
    • /
    • 2019
  • Flow forming is an eco-friendly and high-efficiency plastic deformation process with fewer chips during a process which is specifically used to manufacture seamless tubular products like tire wheels, rocket motor cases etc. On the development of mortar barrel using Inconel718 tube, some flow formed products had dimensional errors on their thickness. In this study, our purpose is to optimize the process conditions with the smallest dimensional error. In order to find an optimum process condition, 2D axisymmetric FEM simulation analyses with Taguchi method were conducted. Geometric variables (attack angle, flatting angle, roller nose radius) and operating parameters (depth of forming, feed rate) are considered as control factors. Forward flow forming with single roller was first analyzed to determine the effective factors using AFDEX software and attack angle of the roller was identified as the most influential factor. Also, the nose radius of the rollers was confirmed as a significant factor in multi-rollers flow forming system. The effect of rollers offset values are also studied and finally, we proposed optimal conditions to improve the accuracy of flow forming process with Inconel718 tube for mortar barrel manufacturing.

Experimental Study on Dynamic Characteristics of an Impinging Jet Injector (충돌형 분사기의 동특성 실험연구)

  • Kim, Jiwook;Chung, Yunjae;Lee, Ingyu;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.86-94
    • /
    • 2013
  • Research on dynamic characteristics of injectors gives us insight for preventing combustion instability in a rocket engine. While lots of studies have been done about swirl injectors' dynamic characteristics, little is known about impinging jet injectors' dynamic characteristics. For this reason, this study was aimed to reveal the dynamic characteristics of an impinging jet injector based on experiment using a hydraulic mechanical pulsator. Gain, which is the relationship between input pressure and output value(pressure or velocity) was analyzed with the frequency and manifold pressure change. Pulsating frequency was chosen in the low range: 5, 10, 15 Hz. As a background work, Methods to determine the jet velocity were discussed. Klystron effect was also considered as a factor of this experiment.

A Study on the Flow Conditions of the Combustion Air Heater Outlet for the Supersonic Combustion Experiment (초음속 연소 실험을 위한 연소식 공기 가열기 출구 유동 조건 실험 연구)

  • Lee, Eun Sung;Han, Hyung-Seok;Lee, Jae Hyuk;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.88-97
    • /
    • 2022
  • In this study, a vitiated air heater was designed and manufactured to supply high-temperature and high-pressure air to the ground test apparatus of a direct-connected supersonic combustor, and an experiment was performed to verify the target design point. By installing wedges at the upper boundary, lower boundary and center of the nozzle exit of the vitiated air heater, it was confirmed that the Mach number satisfies the 2.0 level, and the pressure of the combustion chamber was also satisfactory compared to the design point. In the case of temperature, the measured temperature deviation was large due to the degree of exposure of the thermocouple and the slow response characteristics. After that, the isolator was connected to the rear of the vitiated air heater, and the Mach number was measured in the same method, and the Mach number at the center of the isolator eixt was slightly reduced to 1.8~1.9.

KOREAN PARTICIPATION ON THE COSMIC INFRARED BACKGROUND EXPERIMENT 2 (CIBER2) (적외선 우주배경복사 관측 실험 2(CIBER2) 국제 공동 연구)

  • Lee, D.H.;Park, W.K.;Moon, B.G.;Park, S.J.;Kim, M.G.;Kim, G.H.;Nam, U.W.;Pyo, J.;Jeong, W.S.;Park, Y.S.;Kim, I.J.;Han, W.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.1
    • /
    • pp.11-16
    • /
    • 2015
  • First light galaxies have predictable linear clustering, and are expected to produce fluctuations with a characteristic spatial power spectrum, which peaks at an angular scale of ~ 10 arcminutes and in the $1-2{\mu}m$ spectral regions. The Cosmic Infrared Background ExpeRiment 2 (CIBER2) is a dedicated sounding rocket mission for measuring the fluctuations in the extragalactic infrared background light, following up the previous successful measurements of CIBER1. With a 28.5 cm telescope accompanied with three arms of camera barrels and a dual broadband filter on each H2RG (${\lambda}_c=2.5{\mu}m$) array, CIBER2 can measure 6 bands of wide field ($1.1{\times}2.2$ degrees) up to 3 AB magnitudes deeper than CIBER1. This project is leaded by California Institute of Technology/Jet Propulsion Laboratory, collaborating internationally with Institute of Space and Astronautical Science in Japan, Korea Astronomy and Space Science Institute, Korea Basic Science Institute, and Seoul National University. The Korean team is in charge of 1) one H2RG scientific array, 2) ground station hardware and software, 3) telescope lenses, and 4) flight and test bed electronics fabrication. In this paper, we describe the detailed activities of the Korean participation as well as the current status of the CIBER2 project.