• Title/Summary/Keyword: rock stability

Search Result 1,017, Processing Time 0.023 seconds

Numerical analysis and stability assessment of complex secondary toppling failures: A case study for the south pars special zone

  • Azarafza, Mohammad;Bonab, Masoud Hajialilue;Akgun, Haluk
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.481-495
    • /
    • 2021
  • This article assesses and estimates the progressive failure mechanism of complex pit-rest secondary toppling of slopes that are located within the vicinity of the Gas Flare Site of Refinery No. 4 in South Pars Special Zone (SPSZ), southwest Iran. The finite element numerical procedure based on the Shear Strength Reduction (SSR) technique has been employed for the stability analysis. In this regard, several step modelling stages that were conducted to evaluate the slope stability status revealed that the main instability was situated on the left-hand side (western) slope in the Flare Site. The toppling was related to the rock column-overburden system in relation to the overburden pressure on the rock columns which led to the progressive instability of the slope. This load transfer from the overburden has most probably led to the separation of the rock column and to its rotation downstream of the slope in the form of a complex pit-rest secondary toppling. According to the numerical modelling, it was determined that the Strength Reduction Factor (SRF) decreased substantially from 5.68 to less than 0.320 upon progressive failure. The estimated shear and normal stresses in the block columns ranged from 1.74 MPa to 8.46 MPa, and from 1.47 MPa to 16.8 MPa, respectively. In addition, the normal and shear displacements in the block columns ranged from 0.00609 m to 0.173 m and from 0.0109 m to 0.793 m, respectively.

Regularity and coupling correlation between acoustic emission and electromagnetic radiation during rock heating process

  • Kong, Biao;Wang, Enyuan;Li, Zenghua
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1125-1133
    • /
    • 2018
  • Real-time characterization of the rock thermal deformation and fracture process provides guidance for detecting and evaluating thermal stability of rocks. In this paper, time -frequency characteristics of acoustic emission (AE) and electromagnetic radiation (EMR) signals were studied by conducting experiments during rock continuous heating. The coupling correlation between AE and EMR during rock thermal deformation and failure was analyzed, and the microcosmic mechanism of AE and EMR was theoretically analyzed. During rock continuous heating process, rocks simultaneously produce significant AE and EMR signals. These AE and EMR signals are, however, not completely synchronized, with the AE signals showing obvious fluctuation and the EMR signals increasing gradually. The sliding friction between the cracks is the main mechanism of EMR during the rock thermal deformation and fracture, and the AE is produced while the thermal cracks expanding. Both the EMR and AE monitoring methods can be applied to evaluate the thermal stability of rock in underground mines, although the mechanisms by which these signals generated are different.

A Study on Distinct Element Modelling of Dilatant Rock Joints (팽창성 암석절리의 개별요소 모델링에 관한 연구)

  • 장석부;문현구
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The behavior of a jointed rock mass depends mainly on the geometrical and mechanical properties of joints. The failure mode of a rock mass and kinematics of rock blocks are governed by the orientation, spacing, and persistence of joints. The mechanical properties such as dilation angle, shear strength, maximum closure, strength of asperities and friction coeffiient play important roles on the stability and deformation of the rock mass. The normal and shear behaviour of a joint are coupled due to dilation, and the joint deformation depends also on the boundary conditions such as stiffness conditons. In this paper, the joint constitutive law including the dilatant behaviour of a joint is numerically modelled using the edge-to-edge contact logic in distinct element method. Also, presented is the method to quantify the input parameters used in the joint law. The results from uniaxial compression and direct shear tests using the numeical model of the single joint were compared to the analytic results from them. The boundary effect on the behaviour of a joint is verified by comparing the results of direct shear test under constant stress boundary condition with those under constant stiffness boundary condition. The numerical model developed is applied to a complex jointed rock mass to examine its performance and to evaluate the effect of joint dilation on tunnel stability.

  • PDF

A study on the determination of shear strength and the support design of pre-failed rock slope (일차파괴된 암반사면의 전단강도 및 보강설계법 고찰)

  • 조태진;김영호
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.104-113
    • /
    • 1995
  • Shear strength of the discontinuity on which the pre-failure of rock slope was occurred during surface excavation was measured through the direct shear test using core samples obtained in-situ. Internal friction angle was increased as the roughness of discontinuity surface(JRC) was increased. Results of the tilt test using core samples of higher JRC also showed very similar trend as those of the direct shear test. When the samples replicated from natural cores were used int he tilt test, results of friction angles showed almost perfect continuation of the residual friction angles from the direct shear test. However, when the gouge material existed in the discontinuity the internal friction angle strongly depended upon the rate of filling thickness to the height of asperity irrespective of the JRC. Based on the results of both direct shear test and tilt test internal friction angle and cohesion of discontinuity, which reflect the in-situ conditions fo pre-sliding failure and also can be used for the optimum design of support system, were assessed. Two kinds of support measures which were expected to increase the stability of rock slope were considered; lowering of slope face angle and installation of rock cable. But, it was found that the first method might lead to more unstable conditions of rock slope when the cohesion of discontinuity plane was negligibly low and in that case the support systems of any kind which could exert actual resisting force were needed to ensure the permanent stability of rock slope.

  • PDF

A case study on stability and reinforcement method of cut slope at quarry (채석장 사면의 안정성 검토 및 보강대책에 관한 사례 연구)

  • Park, Choon-Sik;Choi, Jun-Sam;Seo, Hyo-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.677-685
    • /
    • 2009
  • From the result of precise field investigation and stability examination for the cut slope, following results were acquired. 1. The cause of the cut slope collapse seems that it came from complex actions such as the weathering rock itself, existing fault zone and crack from excessive blasting. 2. As a result of analysis, it is appeared that the cut slope can be in danger of plane destruction. 3. The reinforcement force is decided by the result of limit equilibrium analysis. 4. For reinforcement the method after relaxing the slope was judged as the most proper method to the cut slope as comparing/analyzing Rock Anchor, Rock Bolt and method after relaxing the slope.

  • PDF

Dynamic stability analysis of rock tunnels subjected to impact loading with varying UCS

  • Zaid, Mohammad
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.505-518
    • /
    • 2021
  • The present paper has been carried out to understand the effects of impact loading on the rock tunnels, constructed in different region corresponding to varying unconfined compressive strength (UCS), through finite element method. The UCS of rockmass has substantial role in the stability of rock tunnels under impact loading condition due to falling rocks or other objects. In the present study, Dolomite, Shale, Sandstone, Granite, Basalt, and Quartzite rocks have been taken into consideration for understanding of the effect of UCS that vary from 2.85 MPa to 207.03 MPa. The Mohr-Coulomb constitutive model has been considered in the present study for the nonlinear elastoplastic analysis for all the rocks surrounding the tunnel opening. The geometry and boundary conditions of the model remains constant throughout the analysis and missile has 100 kg of weight. The general hard contact has been assigned to incorporate the interaction between different parts of the model. The present study focuses on studying the deformations in the rock tunnel caused by impacting load due to missile for tunnels having different concrete grade, and steel grade. The broader range of rock strength depicts the strong relationship between the UCS of rock and the extent of damage produced under different impact loading conditions. The energy released during an impact loading simulation shows the variation of safety and serviceability of the rock tunnel.

Conservation treatment of the Bonhwa Bukjiri Maaeyeoraejwasang(Rock-Carved Seated Buddha Statue), Korea (봉화 북지리 마애여래좌상의 과학적 보존처리)

  • Kim, Sa-dug;Choi, Joon-Hyun
    • 보존과학연구
    • /
    • s.34
    • /
    • pp.6-17
    • /
    • 2013
  • Bukjiri Seated Rock-carved Buddha of Bonghwa is a rock carved Buddhist Statues on the Two-Mica Granite with mid-size grains. The non-destructive diagnosis on the statues showed that their surfaces had been damaged by exfoliation or granular decomposition and their physical properties are also found to be weak. In addition, the evaluation of slope stability showed that there are the possibility of toppling failure, or planar and wedge failure. So, we have recovered the physical strength and structural stability of rock using the scientific conservation treatment. We also founded that the existing shelter was damaged by the poor ventilation and water leakage. So we constructed it in a way that there is no water leakage while the ventilation is good.

  • PDF

A Comarative study on slope stability modeling of highly fractured rock slopes (절리암반사면의 안정해석 방법에 관한 비교연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Yang, Ki-Ho;Jung, Ha-Seung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.434-443
    • /
    • 2009
  • Slope stability analysis is an essential part of rock slope design. For highly fractured rock, the limit equilibrium method (LEM) based slope stability analysis with a circular failure surface is often carried out assuming the rock mass behaves more or less as a continuum. This paper examines first, the applicability of the finite-element method (FEM) based shear strength reduction (SSR) technique for highly fractured rock slope, and second the use of Mohr-Coulomb (MC) failure criterion in conjunction with generalized Hoek-Brown (HB) failure criterion. The numerical results on a number of cases are compared in terms of the factor of safety (FS). The results indicated that the FEM-based SSR technique yields almost the same FSs from LEM, and that the MC and HB failure criteria yield almost identical FSs when the strength parameters for MC failure criterion are obtained based on the modified HB failure criterion if and only if value of the Hoek-Brown constant $m_i$ is smaller than 10 and slope angle is smaller than 1:1, otherwise MC failure criteria over-estimate the factor of safety.

  • PDF

Stablility Analysis of Underground Cold Storage Openings in Shallow Jointed Rocks (천심도 절리 암반 중에 굴착된 지하 냉장저장 공동의 안정성 해석)

  • 김호영;박연준;한공창;박의섭;선경건
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 1997
  • A pilot plant of underground cold storage for food has been excavated as a R&D program. For the stability assessment of underground cold storage opeinengs in shallow jointed rocks, three kinds of stability problems were analyzed by numerical methods. For the analysis of unstability by rock block movements, DEM was used considering the statistical distribution of rock joints. Concerning thermally induced cracking, FDM was used with thermomechanical stress analysis. Finally, in order to evaluate the joint failure during the thawing process, BE algorithm was applied. Numerical examples applied for the pilot plant show that the possibility of unstable failure of opeings exists but can be avoided with proper rock reinforcements provided.

  • PDF

A Case Study on Joint System Simulation Results Application to Rock Slope Design (절리계 모사결과의 암반사면설계 적용 사례)

  • Kim, Dong-Hee;Jung, Hyuk-Il;Kim, Seouk-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.669-680
    • /
    • 2005
  • It is very difficult to determine the failure block scale in great rock slopes. Especially, postulating entire slope domain as a failure block without attention to discontinuity trace lenth makes very confuse and difficult to design rock slopes. In this paper, we estimate realistic failure block scale using joint system simulation method and introduce the application procedures on rock slope analysis. Besides, presenting how joint characteristics measurement and statistical analysis results are applicated to slope stability analysis design flow.

  • PDF