Browse > Article
http://dx.doi.org/10.12989/gae.2021.24.6.505

Dynamic stability analysis of rock tunnels subjected to impact loading with varying UCS  

Zaid, Mohammad (Department of Civil Engineering, Aligarh Muslim University)
Publication Information
Geomechanics and Engineering / v.24, no.6, 2021 , pp. 505-518 More about this Journal
Abstract
The present paper has been carried out to understand the effects of impact loading on the rock tunnels, constructed in different region corresponding to varying unconfined compressive strength (UCS), through finite element method. The UCS of rockmass has substantial role in the stability of rock tunnels under impact loading condition due to falling rocks or other objects. In the present study, Dolomite, Shale, Sandstone, Granite, Basalt, and Quartzite rocks have been taken into consideration for understanding of the effect of UCS that vary from 2.85 MPa to 207.03 MPa. The Mohr-Coulomb constitutive model has been considered in the present study for the nonlinear elastoplastic analysis for all the rocks surrounding the tunnel opening. The geometry and boundary conditions of the model remains constant throughout the analysis and missile has 100 kg of weight. The general hard contact has been assigned to incorporate the interaction between different parts of the model. The present study focuses on studying the deformations in the rock tunnel caused by impacting load due to missile for tunnels having different concrete grade, and steel grade. The broader range of rock strength depicts the strong relationship between the UCS of rock and the extent of damage produced under different impact loading conditions. The energy released during an impact loading simulation shows the variation of safety and serviceability of the rock tunnel.
Keywords
rock; unconfined compressive strength; finite element analysis; tunnel; impact loading;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shirlaw, J.N. (2016), "Pressurised TBM tunnelling in mixed face conditions resulting from tropical weathering of igneous rock", Tunn. Undergr. Sp. Tech., 57, 1-16. https://doi.org/10.1016/j.tust.2016.01.018.   DOI
2 Shrestha, G.L. and Broch, E. (2008), "Influences of the valley morphology and rock mass strength on tunnel convergence: With a case study of Khimti 1 headrace tunnel in Nepal", Tunn. Undergr. Sp. Tech., 23(6), 638-650. https://doi.org/10.1016/j.tust.2007.12.006   DOI
3 Sofianos, A.I. and Nomikos, P.P. (2006), "Equivalent Mohr-Coulomb and generalized Hoek-Brown strength parameters for supported axisymmetric tunnels in plastic or brittle rock", Int. J. Rock Mech. Min. Sci., 43, 683-704. https://doi.org/10.1016/j.ijrmms.2005.11.006.   DOI
4 Song, K.I., Cho, G.C. and Lee, S.W. (2011), "Effects of spatially variable weathered rock properties on tunnel behaviour", Probabilist. Eng. Mech., 26(3), 413-426. https://doi.org/10.1016/j.probengmech.2010.11.010.   DOI
5 Song, Z.P., Li, S.H., Wang, J.B., Sun, Z.Y., Liu, J. and Chang, Y.Z. (2018), "Determination of equivalent blasting load considering millisecond delay effect", Geomech. Eng., 15(2), 745-754. https://doi.org/10.12989/gae.2018.15.2.745.   DOI
6 Systemes, D. (2014), Abaqus 6.14 Documentation, Dassault Systemes, Providence, Rhode Island, U.S.A.
7 Uyar, G.H. and Aksoy, C.O. (2019), "Comparative review and interpretation of the conventional and new methods in blast vibration analyses", Geomech. Eng., 18(5), 545-554. https://doi.org/10.12989/gae.2019.18.5.545.   DOI
8 Vidanovic, N., Rasuo, B., Kastratovic, G., Maksimovic, S., Curcic, D. and Samardzic, M. (2017), "Aerodynamic-structural missile fin optimization", Aerosp. Sci. Technol., 65, 26-45. https://doi.org/10.1016/j.ast.2017.02.010.   DOI
9 Zhao, Y., Yang, H., Chen, Z., Chen, X., Huang, L. and Liu, S. (2019), "Effects of jointed rock mass and mixed ground conditions on the cutting efficiency and cutter wear of tunnel boring machine", Rock Mech. Rock Eng., 52, 1303-1313. https://doi.org/10.1007/s00603-018-1667-y.   DOI
10 Zhou, L., Zhu, Z., Dong, Y., Ying, P. and Wang, M. (2019), "Study of the fracture behavior of mode I and mixed mode I/II cracks in tunnel under impact loads", Tunn. Undergr. Sp. Tech., 84, 11-21. https://doi.org/10.1016/j.tust.2018.10.018.   DOI
11 Zhou, L., Zhu, Z., Wang, M., Ying, P. and Dong, Y. (2018), "Dynamic propagation behavior of cracks emanating from tunnel edges under impact loads", Soil Dyn. Earthq. Eng., 105, 119-126. https://doi.org/10.1016/j.soildyn.2017.12.012.   DOI
12 Liu, Q., Xu, X. and Wu, Z. (2020), "A GPU-based numerical manifold method for modeling the formation of the excavation damaged zone in deep rock tunnels", Comput. Geotech., 118, 103351. https://doi.org/10.1016/j.compgeo.2019.103351.   DOI
13 Abaqus, (2019), ABAQUS User's Manual, Dassault Systems.
14 Abramson, L.W., Hansmire, W.H. and Boyce, G.M. (1993), "Performance of tunnel portals in weathered rock", Int. J. Rock Mech. Min. Sci., 30(7), 1449-1452. https://doi.org/10.1016/0148-9062(93)90136-2.   DOI
15 Arias, D., Pando, L., Lopez-Fernandez, C., Diaz-Diaz, L.M. and Rubio-Ordonez, A. (2016), "Deep weathering of granitic rocks: A case of tunnelling in NW Spain", Catena, 137, 572-580. https://doi.org/10.1016/j.catena.2015.10.026.   DOI
16 Li, X., Li, C., Cao, W. and Tao, M. (2018), "Dynamic stress concentration and energy evolution of deep-buried tunnels under blasting loads", Int. J. Rock Mech. Min. Sci., 104, 131-146. https://doi.org/10.1016/j.ijrmms.2018.02.018.   DOI
17 Limited, D.M.R.C., (2015), Design Specifications, Barakhamba road, New Delhi, India.
18 Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.   DOI
19 McQueen, L.B., Purwodihardjo, A. and Barrett, S.V.L. (2019), "Rock mechanics for design of Brisbane tunnels and implications of recent thinking in relation to rock mass strength", J. Rock Mech. Geotech. Eng., 11(3), 676-683. https://doi.org/10.1016/j.jrmge.2019.02.001.   DOI
20 Mishra, S. (2019), "Physical and numerical modeling of tunnels under impact and blast loads", Ph.D. Thesis, IIT Delhi, Delhi, India.
21 Mishra, S., Rao, S., Gupta, N.K. and Kumar, A. (2018), "Damage to shallow tunnels in different geomaterials under static and dynamic loading", Thin-Walled Struct., 126, 138-149.   DOI
22 Yang, G., Wang, G., Lu, W., Yan, P. and Chen, M. (2019), "Damage assessment and mitigation measures of underwater tunnel subjected to blast loads", Tunn. Undergr. Sp. Tech., 94, 103131. https://doi.org/10.1016/j.tust.2019.103131.   DOI
23 Mitelman, A. and Elmo, D. (2014), "Modelling of blast-induced damage in tunnels using a hybrid finite-discrete numerical approach", J. Rock Mech. Geotech. Eng., 6(6), 565-573. https://doi.org/10.1016/j.jrmge.2014.09.002.   DOI
24 Naqvi, M.W., Akhtar, M.F., Zaid, M. and Sadique, M.R. (2021), "Effect of superstructure on the stability of underground tunnels", Transp. Infrastruct. Geotechnol., 1-20. https://doi.org/10.1007/s40515-020-00119-6.   DOI
25 Wang, X. and Cai, M. (2020), "A DFN-DEM multi-scale modeling approach for simulating tunnel excavation response in jointed rock masses", Rock Mech. Rock Eng., 53, 1053-1077. https://doi.org/10.1007/s00603-019-01957-8.   DOI
26 Xia, Q., Zhang, L., Dong, H., Li, Z., Zhang, Y., Hu, J., Chen, H. and Chen, Y. (2020), "Bio-weathering of a uranium-bearing rhyolitic rock from Xiangshan uranium deposit, Southeast China", Geochim. Cosmochim. Acta, 279, 88-106. https://doi.org/10.1016/j.gca.2020.03.044.   DOI
27 Xiang, Y. and Yang, Y. (2017), "Spatial dynamic response of submerged floating tunnel under impact load", Mar. Struct., 53, 20-31. https://doi.org/10.1016/j.marstruc.2016.12.009.   DOI
28 Yang, J., Cai, J., Yao, C., Li, P., Jiang, Q. and Zhou, C. (2019), "Comparative study of tunnel blast-induced vibration on tunnel surfaces and inside surrounding rock", Rock Mech. Rock Eng., 52(11), 4747-4761. https://doi.org/10.1007/s00603-019-01875-9.   DOI
29 Zaid, M. and Mishra, S. (2021), "Numerical analysis of shallow tunnels under static loading: A finite element approach", Geotech. Geol. Eng., 1-27. https://doi.org/10.1007/s10706-020-01647-1   DOI
30 Zaid, M. and Rehan Sadique, M. (2021a), Dynamic Analysis of Tunnels in Western Ghats of Indian Peninsula: Effect of Shape and Weathering, in Recent Trends in Civil Engineering, Springer, Singapore, 763-776.
31 Gschwandtner, G.G. and Galler, R. (2013), "Laugungsversuche als Grundlage zur Stabilitatsuntersuchung von Grubengebauden in wasserloslichen Gebirgsformationen [Leaching Experiments as Basis for the Stability Analysis of Underground Structures in Water-Soluble Rock Formations]", BHM Berg- und Huttenmannische Monatshefte, 158, 493-500. https://doi.org/10.1007/s00501-013-0202-4.   DOI
32 Azizi, F., Koopialipoor, M. and Khoshrou, H. (2019), "Estimation of rock mass squeezing potential in tunnel route (Case Study: Kerman water conveyance tunnel)", Geotech. Geol. Eng., 37(3), 1671-1685. https://doi.org/10.1007/s10706-018-0714-5.   DOI
33 Buonsanti, M. and Leonardi, G. (2013), "3-D simulation of tunnel structures under blast loading", Arch. Civ. Mech. Eng., 13(1), 128-134. https://doi.org/10.1016/j.acme.2012.09.002.   DOI
34 Chen, L., Zhou, Z., Zang, C., Zeng, L. and Zhao, Y. (2019), "Failure pattern of large-scale goaf collapse and a controlled roof caving method used in gypsum mine", Geomech. Eng., 18(4), 449-457. https://doi.org/10.12989/gae.2019.18.4.449.   DOI
35 Ozacar, V. (2018), "New methodology to prevent blasting damages for shallow tunnel", Geomech. Eng., 15(6), 1227-1236. https://doi.org/10.12989/gae.2018.15.6.1227.   DOI
36 Zaid, M. and Rehan Sadique, M. (2021b), "A simple approximate simulation using coupled Eulerian-Lagrangian (CEL) simulation in investigating effects of internal blast in rock tunnel", Indian Geotech. J., 1-18. https://doi.org/10.1007/s40098-021-00511-0.   DOI
37 Chu, Z., Wu, Z., Liu, B. and Liu, Q. (2019), "Coupled analytical solutions for deep-buried circular lined tunnels considering tunnel face advancement and soft rock rheology effects", Tunn. Undergr. Sp. Tech., 94, 103111. https://doi.org/10.1016/j.tust.2019.103111.   DOI
38 Do, T.N. and Wu, J.H. (2020), "Verifying discontinuous deformation analysis simulations of the jointed rock mass behavior of shallow twin mountain tunnels", Int. J. Rock Mech. Min. Sci., 130, 104322. https://doi.org/10.1016/j.ijrmms.2020.104322.   DOI
39 Feldgun, V.R., Kochetkov, A. V., Karinski, Y.S. and Yankelevsky, D.Z. (2008), "Internal blast loading in a buried lined tunnel", Int. J. Impact Eng., 35, 172-183. https://doi.org/10.1016/j.ijimpeng.2007.01.001.   DOI
40 Goel, M.D., Matsagar, V. and Marburg, S. (2011), "An abridged review of blast wave parameters", Defence Sci. J., 62(5), 300-306.   DOI
41 Rahaman, O. and Kumar, J. (2020), "Stability analysis of twin horse-shoe shaped tunnels in rock mass", Tunn. Undergr. Sp. Tech., 98, 103354. https://doi.org/10.1016/j.tust.2020.103354.   DOI
42 Park, D. and Michalowski, R.L. (2020), "Three-dimensional roof collapse analysis in circular tunnels in rock", Int. J. Rock Mech. Min. Sci., 128, 104275. https://doi.org/10.1016/j.ijrmms.2020.104275.   DOI
43 Pojani, D. and Stead, D. (2015), "Sustainable urban transport in the developing world: Beyond megacities", Sustainability, 7, 7784-7805. https://doi.org/10.3390/su7067784.   DOI
44 Qin, C.B., Yang, X.L., Pan, Q.J., Sun, Z.B., Wang, L.L. and Miao, T. (2015), "Upper bound analysis of progressive failure mechanism of tunnel roofs in partly weathered stratified Hoek-Brown rock masses", Int. J. Rock Mech. Min. Sci., 74, 157-162. https://doi.org/10.1016/j.ijrmms.2014.10.002.   DOI
45 Rasmussen, L.L., Cacciari, P.P., Futai, M.M., de Farias, M.M. and de Assis, A.P. (2019), "Efficient 3D probabilistic stability analysis of rock tunnels using a Lattice Model and cloud computing", Tunn. Undergr. Sp. Tech., 85, 282-293. https://doi.org/10.1016/j.tust.2018.12.022.   DOI
46 Sharma, H., Mishra, S., Rao, K.S. and Gupta, N.K. (2018), "Effect of cover depth on deformation in tunnel lining when subjected to impact load", Proceedings of the 10th Asian Rock Mechanics Symposium, Singapore.
47 Shi, C., Zhao, Q., Lei, M. and Peng, M. (2019), "Vibration velocity control standard of buried pipeline under blast loading of adjacent tunnel", Soils Found., 59, 2195-2205. https://doi.org/10.1016/j.sandf.2019.12.003.   DOI
48 Zaid, M., Mishra, S. and Rao, K.S. (2019a), "Stability of different shapes of Himalayan tunnels under blast loading", Proceedings of the 8th Indian Rock Conference, New Delhi, India.
49 Zaid, M. and Sadique, M.R. (2020a), "Blast resistant behaviour of tunnels in sedimentary rocks", Int. J. Prot. Struct. https://doi.org/10.1177/2041419620951211.   DOI
50 Zaid, M. and Sadique, M.R. (2020b), "The response of rock tunnel when subjected to blast loading: Finite element analysis", Eng. Reports. https://doi.org/10.1002/eng2.12293.   DOI
51 Zaid, M., Mishra, S. and Rao, K.S. (2020a), Finite Element Analysis of Static Loading on Urban Tunnels., in Geotechnical Characterization and Modelling, Springer, Singapore, 807-823.
52 Zaid, M., Sadique, M.R. and Alam, M.M. (2021), "Blast analysis of tunnels in Manhattan-Schist and Quartz-Schist using coupled-Eulerian-Lagrangian method", Innov. Infrastruct. Solut., 6(2), 1-10. https://doi.org/10.1007/s41062-020-00446-0.   DOI
53 Zaid, M., Sadique, M.R. and Samanta, M. (2020b), "Effect of unconfined compressive strength of rock on dynamic response of shallow unlined tunnel", SN Appl. Sci., 2(12), 1-13. https://doi.org/10.1007/s42452-020-03876-8.   DOI
54 Han, Y. and Liu, H. (2016), "Failure of circular tunnel in saturated soil subjected to internal blast loading", Geomech. Eng., 11(3), 421-438. https://doi.org/10.12989/gae.2016.11.3.421.   DOI
55 Gupta, A.S. (1997), "Engineering behavior and classification of weathering rock", Indian Institute of Technology Delhi, Delhi, India.
56 Zaid, M., Shah, I.A. and Farooqi, M.A. (2019b), "Effect of cover depth in unlined Himalayan Tunnel: A finite element approach", Proceedings of the 8th Indian Rock Conference, New Delhi, India.
57 Zareifard, M.R. (2020), "A new semi-numerical method for elastoplastic analysis of a circular tunnel excavated in a Hoek-Brown strain-softening rock mass considering the blast-induced damaged zone", Comput. Geotech., 122, 103476. https://doi.org/10.1016/j.compgeo.2020.103476.   DOI
58 Zhang, J.Z., Zhou, X.P. and Yin, P. (2019), "Visco-plastic deformation analysis of rock tunnels based on fractional derivatives", Tunn. Undergr. Sp. Tech., 85, 209-219. https://doi.org/10.1016/j.tust.2018.12.019.   DOI
59 Gurocak, Z. and Yalcin, E. (2016), "Excavatability and the effect of weathering degree on the excavatability of rock masses: An example from Eastern Turkey", J. African Earth Sci., 118, 1-11. https://doi.org/10.1016/j.jafrearsci.2016.02.017.   DOI
60 Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M.S.B. and Karimzade, K. (2015), "Simplified damage plasticity model for concrete", Struct. Eng. Int., 27(1), 68-78. https://doi.org/10.2749/101686616X1081.   DOI
61 Han, Y., Zhang, L. and Yang, X. (2016), "Soil-tunnel interaction under medium internal blast loading", Procedia Eng., 143, 403-410. https://doi.org/10.1016/j.proeng.2016.06.051.   DOI
62 Huang, F., Wu, C., Jang, B.A., Hong, Y., Guo, N. and Guo, W. (2020), "Instability mechanism of shallow tunnel in soft rock subjected to surcharge loads", Tunn. Undergr. Sp. Tech., 99, 103350. https://doi.org/10.1016/j.tust.2020.103350.   DOI
63 Huang, X., Zhang, J., Yang, L., Yang, S. and Wang, X. (2016), "Elasto-plastic analysis of the surrounding rock mass in circular tunnel based on the generalized nonlinear unified strength theory", Int. J. Min. Sci. Technol., 26(5), 819-823. https://doi.org/10.1016/j.ijmst.2016.05.043.   DOI
64 IS456 (2000), Plain and Reinforced Concrete - Code of Practice, Parliament of India, New Delhi, India.
65 Jeon, S., Kim, T.H. and You, K.H. (2015), "Characteristics of crater formation due to explosives blasting in rock mass", Geomech. Eng., 9(3), 329-344. https://doi.org/10.12989/gae.2015.9.3.329.   DOI
66 Koneshwaran, S., Thambiratnam, D.P. and Gallage, C. (2015), "Blast response of segmented bored tunnel using coupled SPHFE method", Structures, 2, 58-71. https://doi.org/10.1016/j.istruc.2015.02.001.   DOI
67 Johnson, G.R. and Cook, W.H. (1983), "A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures", Proceedings of 7th International Symposium on Ballistics, Hague, The Netherlands, April.
68 Kargar, A.R. (2019), "An analytical solution for circular tunnels excavated in rock masses exhibiting viscous elastic-plastic behaviour", Int. J. Rock Mech. Min. Sci., 124, 104128. https://doi.org/10.1016/j.ijrmms.2019.104128.   DOI
69 Kim, D. and Park, K. (2019), "Study on the characteristics of grout material using ground granulated blast furnace slag and carbon fiber", Geomech. Eng., 19(4), 361-368. https://doi.org 10.12989/gae.2019.19.4.361.   DOI
70 Kristoffersen, M., Minoretti, A. and Borvik, T. (2019), "On the internal blast loading of submerged floating tunnels in concrete with circular and rectangular cross-sections", Eng. Fail. Anal., 103, 462-480. https://doi.org/10.1016/j.engfailanal.2019.04.074.   DOI
71 Kumar, A. (2019), "Engineering behavior of oil shale under high pressure after thermal treatment", Ph.D. Thesis, IIT Delhi, Delhi, India.
72 Lane, K.S. (2019), Tunnels and underground excavations, https://www.britannica.com/technology/tunnel.
73 Lee, C.J. (2012), "Three-dimensional numerical analyses of the response of a single pile and pile groups to tunnelling in weak weathered rock", Tunn. Undergr. Sp. Tech., 32, 132-142. https://doi.org/10.1016/j.tust.2012.06.005.   DOI
74 Li, C. and Li, X. (2018), "Influence of wavelength-to-tunnel-diameter ratio on dynamic response of underground tunnels subjected to blasting loads", Int. J. Rock Mech. Min. Sci., 112, 323-338. https://doi.org/10.1016/j.ijrmms.2018.10.029.   DOI