• Title/Summary/Keyword: rock specimens

Search Result 291, Processing Time 0.022 seconds

Investigating the effects of non-persistent cracks' parameters on the rock fragmentation mechanism underneath the U shape cutters using experimental tests and numerical simulations with PFC2D

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Abad, Sh. Mohamadi Bolban;Marji, Mohammad Fatehi;Saeedi, Gholamreza;Yu, Yibing
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.495-513
    • /
    • 2022
  • This paper aims to study the fracture mechanism of rocks under the 'u'shape cutters considering the effects of crack (pre-existing crack) distances, crack spacing and crack inclination angles. The effects of loading rates on the rock fragmentation underneath these cutters have been also studied. For this purpose, nine experimental samples with dimensions of 5 cm×10 cm×10 cm consisting of the non-persistent cracks were prepared. The first three specimens' sets had one non-persistent crack (pre-existing crack) with a length of 2 cm and angularity of 0°, 45°, and 90°. The spacing between the crack and the "u" shape cutter was 2 cm. The second three specimens" set had one non-persistent crack with a length of 2 cm and angularity of 0°, 45°, and 90° but the spacing between pre-existing crack and the "u" shape cutter was 4 cm. The third three specimens'set has two non-persistent cracks with lengths of 2 cm and angularity of 0°, 45° and 90°. The spacing between the upper crack and the "u" shape cutter was 2 cm and the spacing between the lower crack and the upper crack was 2 cm. The samples were tested under a loading rate of 0.005 mm/s. concurrent with the experimental investigation. The numerical simulations were performed on the modeled samples with non-persistent cracks using PFC2D. These models were tested under three different loading rates of 0.005 mm/s, 0.01 mm/sec and 0.02 mm/sec. These results show that the crack number, crack spacing, crack angularity, and loading rate has important effects on the crack growth mechanism in the rocks underneath the "u" shape cutters. In addition, the failure modes and the fracture patterns in the experimental tests and numerical simulations are similar to one another showing the validity and accuracy of the current study.

Nonlinear Strength Parameters and Failure Characteristics of Anisotropy Rock - Shales (혈암의 이방성을 고려한 비선형 강도정수 및 파괴규준식 산정)

  • 김영수;이재호;허노영;방인호;성언수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.713-720
    • /
    • 2000
  • The directional response of strength and deformation on the rocks acting by external loads is called by strength and deformability anisotropy, respectively. Peak strength and its failure criteria of anisotro rocks have been studied and reported. Many authors have investigated in detail the behavior of triaxial peak strength of anisotropic rocks(Jaeger 1960, McLamore & Gray 1967, Hoek & Brown 1980, Ramamurthy & Rao 1985). They concluded that the triaxial strength of anisotropic rocks varies according to the inclination of discontinuity in specimens. And, the minimun triaxial strength occurs in the specmen with 60° of inclination angle ; and specimens with 0° or 90° inclination have maximum triaxial strength. Based on the experimental result, the behavior triaxial strength is investigated. The triaxial compression tests due to the angle bedding plane have been conducted and the material constants, 'm' and 's', cohesion and angle of friction and nonlinear strength parameters to fit for the failure criterion were derived from the regression analysis. And, the experimental date are employed to examine three existing failure criteria for peak strength, provided by Jaeger, McLamore and Hoek & Brown and Ramamurthy & Rao. For a shale, the suitability of the failure criteiria of triaxial peak strength for anisotropic rocks is discussed.

  • PDF

A Study on Punch Penetration Test for Performance Estimation of Tunnel Boring Machine (TBM의 굴진성능 예측을 위한 압입시험에 대한 연구)

  • Jeong, Ho-Young;Jeon, Seok-Won;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.144-156
    • /
    • 2012
  • This paper discusses the methods of estimating the punch penetration indices and data analysis punch penetration test to estimate the TBM normal force and penetration rate. In punch penetration test is known as a useful test to estimate penetration rates and normal force of TBMs directly with several slope indices indicated drill-ability and brittleness of rocks. However, the standard methods and indices for punch penetration test are not suggested yet. The main purpose of punch penetration test which is prediction of normal force of TBM disc cutter when cutters excavate rock mass. In this study, the punch penetration tests were performed for 6 representative Korean rock types and variety length and diameter of rock core specimens. Among slope indices were obtained from punch penetration test, PLI and MLI which is suggested in this study show high correlation with cutter force measured by full-scale cutting test. The results show that the predicted normal force of a single disc cutter and the experimental error was 10%. Based on these results, it is concluded that punch penetration test is reliable laboratory test for estimating thrust and penetration rates of TBM.

Guidedwave-induced rockbolt integrity using Fourier and wavelet transforms (유도파에 대한 푸리에 및 웨이브렛 변환을 이용한 록볼트의 건전도 평가)

  • Lee, In-Mo;Kim, Hyun-Jin;Han, Shin-In;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 2007
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these types of structures. The purpose of this study is the evaluation of rock bolt integrity using Fourier and wavelet transforms of the guided ultrasonic waves. After five rock bolt specimens with various defect ratios are embedded into a large scale concrete block, guided waves are generated by a PZT (lead zirconate titanate) element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the frequency domain using the Fourier transform, and in the time-frequency domain using the wavelet transform based on a Gabor wavelet. The spectrum obtained from the Fourier transform shows that a portion of high frequency contents increases with increase in the defect ratio. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with the defect ratio. This study shows that the spectrum ratio and the energy velocity may be indicators fur the evaluation of rock bolt integrity.

  • PDF

Experimental Study on the Elastic Constants of A Transversely Isotropic Rock by Multi-Specimen Compression Tests Report 2 - Statistical Evaluation and Determination of True Values of Elastic Constants (다중시험편 시험에 의한 평면이방성 암석의 탄성상수 분석연구 제 2 보 - 자료의 통계적 평가와 참값의 결정)

  • Park, Chulwhan;Park, Chan;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.346-353
    • /
    • 2012
  • Multi-specimen uniaxial compression test has been carried out in order to find the method to determine the five independent elastic constants from a single standard specimen of a transversely isotropic rock. Total 35 specimens of 7 different angles from a large block of rhyolite presenting the flow structure obviously are used in tests. This second report is to focus on the statistical evaluation of measured strains and analyzed elastic constants. And the determination of their true or near-true values is discussed. As the result of RSD analysis, it turns out that the reliability of measured strains is sufficiently obtained and Saint-Venant approximation is well applicable except 15 degree angled specimen in tests. RSD is decreasing on the increase of the angle of anisotropy. This tendency may be caused not only by the decreasing of the deviation of measured strains, but also by the better applicability of Saint-Venant approximation on the increase of angle. It can be concluded that the analyzed values are considered the near-true ones of five independent constants on the high reliability. But the variation of the apparent Young's modulus expected by these values is not proved to match the measured tendency. It is inferred that the factor to decrease the apparent Young's modulus and/or to increase the shear strain, is present in the test or in the nature of the anisotropy in consideration of this inconsistency.

Evaluation for Applications of Displacement Criterion by the Critical Strain of Uniaxial Compression in Rock Mass Tunnel (일축압축 한계변형률에 의한 암반터널 변위기준 적용성 평가)

  • Kim, Young-Su;Kim, Dae-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.321-329
    • /
    • 2009
  • Laboratory compressive test was conducted on 6 different types of rock in order to investigate the characteristic of critical strain under uniaxial and triaxial stress condition. The results of uniaxial compressive test mostly ranged within 1~100MPa, the critical strain was also located between 0.1~1.0%. Therefore the results distributed within the upper and lower boundary proposed by Sakurai (1982). And the failure/critical strain ratio (${\varepsilon}_f/{\varepsilon}_0$) showed between 1.0~1.8 value depending on the uniaxial compressive strength. The results of critical strain by triaxial compressive test showed below 0.8% value for all test, the M value calculated from uniaxial and triaxial compressive test results ranged 1.0~8.0 for most of rock specimens. It is concluded that failure strain (${\varepsilon}_{f3}$) of rock mass, which is in triaxial stress condition is larger than the results of uniaxial stress condition (${\varepsilon}_{f1}$) by 1.0~8.0 times and value showed 1.0~1.8 larger value than critical strain (${\varepsilon}_{01}$). Therefore it is a conservative way for rock tunnel to use critical strain (${\varepsilon}_{01}$) calculated from a uniaxial compressive strength on tunnel displacement monitoring.

A novel retentive type of dental implant prosthesis: marginal fitness of the cementless double crown type implant prosthesis evaluated by bacterial penetration and viability

  • Hong, Seoung-Jin;Kwon, Kung-Rock;Jang, Eun-Young;Moon, Ji-Hoi
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.233-238
    • /
    • 2020
  • PURPOSE. This study aims to compare the marginal fitness of two types of implant-supported fixed dental prosthesis, i.e., cementless fixation (CL.F) system and cement-retained type. MATERIALS AND METHODS. In each group, ten specimens were assessed. Each specimen comprised implant lab analog, titanium abutment fabricated with a 2-degree tapered axial wall, and zirconia crown. The crown of the CL.F system was retained by frictional force between abutment and relined composite resin. In the cement-retained type, zinc oxide eugenol cement was used to set crown and abutment. All specimens were sterilized with ethylene oxide, immersed in Prevotella intermedia culture in a 50 mL tube, and incubated with rotation. After 48 h, the specimens were washed thoroughly before separating the crown and abutment. The bacteria that penetrated into the crown-abutment interface were collected by washing with 500 µL of sterile saline. The bacterial cell number was quantified using the agar plate count technique. The BacTiter-Glo Microbial Cell Viability Assay Kit was used to measure bacterial adenosine triphosphate (ATP)-bioluminescence, which reflects the bacterial viability. The t-test was performed, and the significance level was set at 5%. RESULTS. The number of penetrating bacterial cells assessed by colony-forming units was approximately 33% lower in the CL.F system than in the cement-retained type (P<.05). ATP-bioluminescence was approximately 41% lower in the CL.F system than in the cement-retained type (P<.05). CONCLUSION. The CL.F system is more resistant to bacterial penetration into the abutment-crown interface than the cement-retained type, thereby indicating a precise marginal fit.

Shear behavior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches

  • Haeri, Hadi;Sarfarazi, V.;Zhu, Zheming;Hokmabadi, N. Nohekhan;Moshrefifar, MR.;Hedayat, A.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.221-230
    • /
    • 2019
  • In this paper, shear behavior of non-persistent joint surrounded in concrete and gypsum layers has been investigated using experimental test and numerical simulation. Two types of mixture were prepared for this study. The first type consists of water and gypsum that were mixed with a ratio of water/gypsum of 0.6. The second type of mixture, water, sand and cement were mixed with a ratio of 27%, 33% and 40% by weight. Shear behavior of a non-persistent joint embedded in these specimens is studied. Physical models consisting of two edge concrete layers with dimensions of 160 mm by 130 mm by 60 mm and one internal gypsum layer with the dimension of 16 mm by 13 mm by 6 mm were made. Two horizontal edge joints were embedded in concrete beams and one angled joint was created in gypsum layer. Several analyses with joints with angles of $0^{\circ}$, $30^{\circ}$, and $60^{\circ}$ degree were conducted. The central fault places in 3 different positions. Along the edge joints, 1.5 cm vertically far from the edge joint face and 3 cm vertically far from the edge joint face. All samples were tested in compression using a universal loading machine and the shear load was induced because of the specimen geometry. Concurrent with the experiments, the extended finite element method (XFEM) was employed to analyze the fracture processes occurring in a non-persistent joint embedded in concrete and gypsum layers using Abaqus, a finite element software platform. The failure pattern of non-persistent cracks (faults) was found to be affected mostly by the central crack and its configuration and the shear strength was found to be related to the failure pattern. Comparison between experimental and corresponding numerical results showed a great agreement. XFEM was found as a capable tool for investigating the fracturing mechanism of rock specimens with non-persistent joint.

Thermal Conductivity from an in-situ Thermal Response Test Compared with Soil and Rock Specimens under Groundwater-bearing Conditions (지하수 부존지역에서의 토질 및 암석 시료와 현장 열응답시험의 열전도도 비교)

  • Kim, Jin-Sung;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.389-398
    • /
    • 2013
  • Studies of the thermal properties of various rock types obtained from several locations in Korea have revealed significant differences in thermal conductivities in the thermal response test (TRT), which has been applied to the design of a ground-source heat pump system. In the present study, we aimed to compare the thermal conductivities of the samples with those obtained by TRT. The thermal conductivities of soil and rock samples were 1.32W/m-K and 2.88 W/m-K, respectively. In comparison, the measured TRT value for thermal conductivity was 3.13W/m-K, which is 10% higher than that of the rock samples. We consider that this difference may be due to groundwater flow because abundant groundwater is present in the study area and has a hydraulic conductivity of 0.01. It is natural to consider that the object of TRT is to calculate the original thermal conductivity of the ground, following the line source theory. Therefore, we conclude that the TRT applied to a domestic standing column type well is not suitable for a line source theory. To solve these problems, values of thermal conductivity measured directly from samples should be used in the design of ground-source heat pump systems.

The Classifying Ability of the Igneous Rocks with Naked Eyes for Preservice Science Teachers (예비과학교사들의 화성암 육안분류 능력)

  • Moon Byoung Chan;Jeong Jin-Woo;Chung Chull Hwan
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.630-639
    • /
    • 2005
  • The purpose of this study was to investigate the classifying ability of the igneous rocks with the naked eye for 36 preservice science teachers. For this, we selected six specimens of igneous rocks that consisted of rhyolite, andesite, basalt, granite, diorite, and gabbro, and performed the questionnaire with them. Preservice science teachers needed the average of 3 tools to classify the rocks. Most of the selected tools were loupe, streak plate, hammer and Mohs’ hardness scale. Many preservice science teachers selected basalt and granite samples to classify igneous rocks among 6 kinds of the rocks which were exhibited. However, the results of the identification with the naked eye showed that the right answer rate was significantly different based on what rock sample had been selected. Nobody gave the right answer among 10 students who chose the rhyolite sample, but all of 36 students who picked the basalt sample answered correctly. And $62\%$ of 8 students who chose the andesite sample, 62% of 32 student choosing granite, $7\%$ of 13 students choosing diorite and $44\%$ of 9 students choosing gabbro were correctly answered. In identifying igneous rock samples with the naked eye, most subjects relied on vesicular texture to basalt, and they used textural, color and empirical characters to granite. But, some felt more or less difficulty to distinguish between intermediate and light colors and to recognize porphyry.