• Title/Summary/Keyword: rock properties

Search Result 1,215, Processing Time 0.023 seconds

Three-Dimensional Modelling and Sensitivity Analysis for the Stability Assessment of Deep Underground Repository

  • Kwon, S.;Park, J.H.;Park, J.W.;Kang, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.605-618
    • /
    • 2001
  • For the mechanical stability assessment of a deep underground high-level waste repository. computer simulations using FLAC3D were carried out and important parameters including stress ratio, depth, tunnel size, joint spacing, and joint properties were chosen from sensitivity analysis. The main effect as well as the interaction effect between the important parameters could be investigated effectively using fractional factorial design . In order to analyze the stability of the disposal tunnel and deposition hole in a discontinuous rock mass, different modelings were performed under different conditions using 3DEC and the influence of joint distribution and properties, rock properties and stress ratio could be determined. From the three dimensional modelings, it was concluded that the conceptual repository design was mechanically stable even in a discontinuous rock mass.

  • PDF

Relationships Between Physical Properties and Topography in Mountain and Valley Bedrocks (산지와 곡지 암석의 물리적 특성과 지형 사이의 관계)

  • Park, Chung-Sun;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.3
    • /
    • pp.27-39
    • /
    • 2016
  • This study statistically investigates relationships between physical properties of rocks and topography by measuring and analyzing section, topographical and measured parameters of 58 bedrock outcrops at areas covered by gneiss, schist, granite, andesite, sandstone and limestone in the Korean Peninsula. Multiple linear regression analysis suggests that the joint spacing, joint continuity, weathering grade and maximum joint width of rocks among the measured parameters are related to the topographical parameters with statistical significances. Therefore, this study suggests that rock properties such as joint spacing, joint continuity, weathering grade and maximum joint width seem to greatly influence topography, although various factors can affect topographical parameters.

Effect of brittleness on the micromechanical damage and failure pattern of rock specimens

  • Imani, Mehrdad;Nejati, Hamid Reza;Goshtasbi, Kamran;Nazerigivi, Amin
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.535-547
    • /
    • 2022
  • Failure patterns of rock specimens represent valuable information about the mechanical properties and crack evolution mechanism of rock. Several kinds of research have been conducted regarding the failure mechanism of brittle material, however; the influence of brittleness on the failure mechanism of rock specimens has not been precisely considered. In the present study, experimental and numerical examinations have been made to evaluate the physical and mechanical phenomena associated with rock failure mechanisms through the uniaxial compression test. In the experimental part, Unconfined Compressive Strength (UCS) tests equipped with Acoustic Emission (AE) have been conducted on rock samples with three different brittleness. Then, the numerical models have been calibrated based on experimental test results for further investigation and comparing the micro-cracking process in experimental and numerical models. It can be perceived that the failure mode of specimens with high brittleness is tensile axial splitting, based on the experimental evidence of rock specimens with different brittleness. Also, the crack growth mechanism of the rock specimens with various brittleness using discrete element modeling in the numerical part suggested that the specimens with more brittleness contain more tensile fracture during the loading sequences.

The Mechanical Behavior of Jointed Rock Masses by Using PFC2D (PFC2D를 이용한 절리암반의 역학적 물성 평가연구)

  • Park Eui-Seob;Ryu Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.119-128
    • /
    • 2005
  • Although the evaluation of the mechanical properties and behavior of jointed rock masses is very important for the design of tunnel and underground openings, it has always been considered the most difficult problem. One of the difficulties in describing the rock mass behavior is the selection of the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. In this paper, a 30\;m\;\times\;30\;m\;\times\;30\;m m jointed rock mass of road tunnel site was analyzed. h discrete fracture network was developed from the joint geometry obtained from core logging and surface survey. Using the discontinuities geometry from the DFN model, PFC simulations were carried out, starting with the intact rock and systematically adding the joints and the stress-strain response was recorded for each case. With the stress-strain response curves, the mechanical properties of jointed rock masses were determined. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, getting the mechanical response of the PFC model doesn't require a user specified constitutive model.

Assessment of Rock Mass Properties Ahead of Tunnel Face Using Drill Performance Parameters (천공데이터를 활용한 터널 막장 전방 암반특성 평가)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Chang, Soo-Ho;Seo, Kyeong-Won;Lee, Seung-Do
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.67-77
    • /
    • 2007
  • The drill monitoring data are useful for the detection of abrupt and unexpected changes in ground renditions. This paper introduces a new approach to how drill performance parameters can be used for the prediction of quantitative rock mass properties ahead of tunnel face and the blasting design. The drill monitoring parameters available for the predictions include the instantaneous advance speed, thrust force, torque, tool pressure and penetration rate. The assessment of the drill monitoring parameters will be able to build a database provided that in-situ drill monitoring informations are accumulated and enable us to make a reasonable blast design based on quantitative assessment of rock mass.

Experiments Study on Critical Strain Properties of Sedimentary Rocks (실험적 연구를 통한 퇴적암의 한계변형률 특성에 관한 연구)

  • Lee, Jae-Ho;Kim, Young-Su;Jin, Guang-Ril;Park, Jang-Ho;Park, Si-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.211-219
    • /
    • 2008
  • The hazard warning levels are necessary for the rational design and safety construction of underground space, as mountain and urban tunnel. Sakurai provided the hazard warning levels for assessing the stability of tunnels using the critical strain of rock mass, which is defined as a ratio between uni-axial compressive strength and the Young's modulus. The concept of critical strain guidelines is introduced in this study for the assessment of tunnel safety during excavation. Moreover, in this paper, the critical strain properties of sedimentary rock in Korea has investigated and analysed in detail by Lab. test, as the uniaxial compression tests. Finally, critical strain properties of sedimentary rock is discussed the relationship of failure strain values, uniaxial compression strengths and Young's modulus.

  • PDF

Experiments Study on Critical Strain Properties of Sedimentary Rocks based on Mohr-Coulomb Strength Criterion (Mohr-Coulomb의 파괴기준을 기본으로한 퇴적암의 한계변형률 특성에 관한 연구)

  • Kim, Young-Su;Lee, Jae-Ho;Jin, Guang-Ril;Shin, Shi-Un;Kwon, Tea-Soon;Han, Hee-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.821-832
    • /
    • 2008
  • The hazard warning levels are necessary for the rational design and safety construction of underground space, as mountain and urban tunnel. Sakurai provided the hazard warning levels for assessing the stability of tunnels using the critical strain of rock mass, which is defined as a ratio between uni-axial compressive strength and the Young's modulus. The concept of critical strain guidelines is introduced in this study for the assessment of tunnel safety during excavation. Moreover, in this paper, the critical strain properties of sedimentary rock in Korea has investigated and analysed in detail by Lab. test, as the uniaxial and triaxial compression tests. Finally, critical strain properties of sedimentary rock on uniaxial and triaxial stress condition is discussed the relationship of failure strain values, uniaxial and triaxial compression strengths, confining pressure and Young's modulus.

  • PDF

탄성정수 및 입사파형의 변화에 따른 암반 내 균열전파양상에 관한 수치해석적 연구

  • Park, Seung-Hwan;Jo, Sang-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.155-159
    • /
    • 2009
  • Crack-controlled method which utilizes the dynamic energy such as explosives and propellent gases have been applied to the development of mineral resource and oil and civil engineering. It is necessary to consider the fracture processes associated with the material properties and external forces to control crack propagation using borehole pressure. To investigate the influence of the applied borehole pressure waveform on the crack propagation in rock masses having different material properties, a no-free surface model was used, consisting of a borehole in rock with a continuous boundary. Loading rates ranging from 1 to 100MPa/${\mu}s$ with different rock mass properties was employed to investigate the loading rate dependency of fracture patterns in the rock mass.

  • PDF

A Study of Engineering Properties and Deformation Behavior of Weathered Rock Mass (풍화 암반의 공학적 특성 및 변형거동에 관한 연구)

  • 강추원;박현식;김수로
    • Explosives and Blasting
    • /
    • v.22 no.2
    • /
    • pp.33-43
    • /
    • 2004
  • The six grades weathering system is normally used in weathered rock classification. In this study. fresh and weathered rock block of grade I to V were sampled in Jang-soo ana but samples of the grade VI was omitted from this study. The variation quantities of chemical weathering indices with weathering degree are smaller than those of physical and mechanical properties. Increase of Weathering degree is well indicated by physical and mechanical properties such as strength, hardness, ultrasonic velocity and slake durability result. Especially, absorption and porosity ratio is a good indicator. As weathering proceeds. a number of the cracks affect the rock deformation. Therefore, stress-strain curves of weathered rocks in unconfined state are quite different from ones of fresh rocks.