Browse > Article
http://dx.doi.org/10.12989/sss.2022.29.4.535

Effect of brittleness on the micromechanical damage and failure pattern of rock specimens  

Imani, Mehrdad (Rock Mechanics Division, School of Engineering, Tarbiat Modares University)
Nejati, Hamid Reza (Rock Mechanics Division, School of Engineering, Tarbiat Modares University)
Goshtasbi, Kamran (Rock Mechanics Division, School of Engineering, Tarbiat Modares University)
Nazerigivi, Amin (Rock Mechanics Division, School of Engineering, Tarbiat Modares University)
Publication Information
Smart Structures and Systems / v.29, no.4, 2022 , pp. 535-547 More about this Journal
Abstract
Failure patterns of rock specimens represent valuable information about the mechanical properties and crack evolution mechanism of rock. Several kinds of research have been conducted regarding the failure mechanism of brittle material, however; the influence of brittleness on the failure mechanism of rock specimens has not been precisely considered. In the present study, experimental and numerical examinations have been made to evaluate the physical and mechanical phenomena associated with rock failure mechanisms through the uniaxial compression test. In the experimental part, Unconfined Compressive Strength (UCS) tests equipped with Acoustic Emission (AE) have been conducted on rock samples with three different brittleness. Then, the numerical models have been calibrated based on experimental test results for further investigation and comparing the micro-cracking process in experimental and numerical models. It can be perceived that the failure mode of specimens with high brittleness is tensile axial splitting, based on the experimental evidence of rock specimens with different brittleness. Also, the crack growth mechanism of the rock specimens with various brittleness using discrete element modeling in the numerical part suggested that the specimens with more brittleness contain more tensile fracture during the loading sequences.
Keywords
acoustic emission; brittleness; failure pattern; micro-crack; spalling; splitting;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Gao, J., Xi, Y., Fan, L. and Du, X. (2021), "Real-time visual analysis of the microcracking behavior of thermally damaged granite under uniaxial loading", Rock Mech. Rock Eng., 54(12), 6549-6564. https://doi.org/10.1007/s00603-021-02639-0   DOI
2 Kim, J.S., Kim, G.Y., Baik, M.H., Finsterle, S. and Cho, G.C. (2019), "A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission", Geomech. Eng., Int. J., 18(1), 11-20. http://doi.org/10.12989/gae.2019.18.1.011   DOI
3 Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock type materials under uniaxial and biaxial", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9   DOI
4 Cai, M., Kaiser, P.K., Suorineni, F. and Su, K. (2007), "A study on the dynamic behavior of the Meuse/Haute-Marne argillite", Physics and Chemistry of the Earth, Parts A/B/C, 32(8-14), 907-916. https://doi.org/10.1016/j.pce.2006.03.007   DOI
5 Fan, L.F., Yang, K.C., Wang, M., Wang, L.J. and Wu, Z.J. (2021), "Experimental study on wave propagation through granite after high-temperature treatment", Int. J. Rock Mech. Min. Sci., 148, 104946. https://doi.org/10.1016/j.ijrmms.2021.104946   DOI
6 Potyondy, D.O. (2010), "A grain-based model for rock: approaching the true microstructure", Proceedings of Rock Mechanics in the Nordic Countries, pp. 9-12.
7 Potyondy, D. (2013), PFC3D Flat-Joint Contact Model (version 1), Itasca Consulting Group, Inc., Minneapolis, MN, USA, Technical Memorandum ICG7234-L, June 25, 2013.
8 Jaeger, J.C., Cook, N.G. and Zimmerman, R. (2009), Fundamentals of Rock Mechanics, John Wiley & Sons.
9 Chen, G., Li, T., Wang, W., Guo, F. and Yin, H. (2017), "Characterization of the brittleness of hard rock at different temperatures using uniaxial compression tests", Geomech. Eng., Int. J., 13(1), 63-77. https://doi.org/10.12989/gae.2017.13.1.063   DOI
10 Cho, N.A., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 997-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002   DOI
11 Fan, L.F., Wu, Z.J., Wan, Z. and Gao, J.W. (2017), "Experimental investigation of thermal effects on dynamic behavior of granite", Appl. Thermal Eng., 125, 94-103. https://doi.org/10.1016/j.applthermaleng.2017.07.007   DOI
12 Fan, L., Gao, J., Du, X. and Wu, Z. (2020), "Spatial gradient distributions of thermal shock-induced damage to granite", J. Rock Mech. Geotech. Eng., 12(5), 917-926. https://doi.org/10.1016/j.jrmge.2020.05.004   DOI
13 Ghazvinian, A., Nejati, H.R., Sarfarazi, V. and Hadei, M.R. (2013), "Mixed mode crack propagation in low brittle rock-like materials", Arab. J. Geosci., 6(11), 4435-4444. https://doi.org/10.1007/s12517-012-0681-8   DOI
14 Cai, M. and Liu, D. (2009), "Study of failure mechanisms of rock under compressive - shear loading using real-time laser holography", Int. J. Rock Mech. Min. Sci., 46, 59-68. https://doi.org/10.1016/j.ijrmms.2008.03.010   DOI
15 Dursun, A.E. and Gokay, M.K. (2016), "Cuttability assessment of selected rocks through different brittleness values", Rock Mech. Rock Eng., 49(4), 1173-1190. https://doi.org/10.1007/s00603-015-0810-2   DOI
16 Gramberg, J. (1989), A Non-conventional View on Rock Mechanics, Rotterdam: Balkema.
17 Haeri, H. and Marji, M.F. (2016), "Simulating the crack propagation and cracks coalescence underneath TBM disc cutters", Arab. J. Geosci., 9(2), 124. https://doi.org/10.1007/s12517-015-2137-4   DOI
18 Mughieda, O.S. and Khawaldeh, I. (2006), "Coalescence of offset rock joints under biaxial loading", Geotech. Geol. Eng., 24, 985-999. https://doi.org/10.1007/s10706-005-8352-0   DOI
19 Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2017), "Influence of nano-silica on the failure mechanism of concrete specimens", Comput. Concrete, Int. J., 19(4), 429-434. https://doi.org/10.12989/cac.2017.19.4.429   DOI
20 Chen, S.J., Ren, M.Z., Wang, F., Yin, D.W. and Chen, D.H. (2020), "Mechanical properties and failure mechanisms of sandstone with pyrite concretions under uniaxial compression", Geomech. Eng., Int. J., 22(5), 385-396. http://doi.org/10.12989/gae.2020.22.5.385   DOI
21 Fakhimi, A. and Hemami, B. (2015), "Axial splitting of rocks under uniaxial compression", Int. J. Rock Mech. Min. Sci., 79, 124-134. https://doi.org/10.1016/j.proeng.2017.05.226   DOI
22 Gong, Q.M. and Zhao, J. (2007), "Influence of rock brittleness on TBM penetration rate in Singapore granite", Tunnell. Undergr. Space Technol., 22(3), 317-324. https://doi.org/10.1016/j.tust.2006.07.004   DOI
23 Heidari, M., Khanlari, G.R., Torabi-Kaveh, M., Kargarian, S. and Saneie, S. (2014), "Effect of porosity on rock brittleness", Rock Mech. Rock Eng., 47(2), 785-790. https://doi.org/10.1007/s00603-013-0400-0   DOI
24 Meng, F., Zhou, H., Zhang, C., Xu, R. and Lu, J. (2015), "Evaluation methodology of brittleness of rock based on post-peak stress- strain curves", Rock Mech. Rock Eng., 48(5), 1787-1805. https://doi.org/10.1007/s00603-014-0694-6   DOI
25 Imani, M., Nejati, H.R. and Goshtasbi, K. (2017), "Dynamic response and failure mechanism of Brazilian disk specimens at high strain rate", Soil Dyn. Earthq. Eng., 100, 261-269. https://doi.org/10.1016/j.soildyn.2017.06.007   DOI
26 Khodayar, A. and Nejati, H.R. (2018), "Effect of thermal-induced microcracks on the failure mechanism of rock specimens", Comput. Concrete, Int. J., 22(1), 93-100. http://doi.org/10.12989/cac.2018.22.1.093   DOI
27 Bieniawski, Z.T. (1967), "Mechanism of brittle fracture of rock. Part II - experimental studies", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4(4), 407-423. https://doi.org/10.1016/0148-9062(67)90031-9   DOI
28 ISRM (1981), In: Brown, E.T. (ed.), Suggested methods: rock characterization, testing and monitoring, Pergamon, Oxford, p. 211.
29 Hoek, E. and Bieniawski, Z.T. (1965), "Brittle fracture propagation under compression", Int. J. Fract. Mech., 1, 137-55. https://doi.org/10.1007/BF00186851   DOI
30 Hucka, V. and Das, B. (1974), "Brittleness determination of rocks by different methods", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 11(10), 389-392. https://doi.org/10.1016/0148- 9062(74)91109-7   DOI
31 Itasca Consulting Group (2008), PFC2D (particle flow code in 2 dimensions), version 4.0, manual. Minneapolis: ICG.
32 Kahraman, S. (2002), "Correlation of TBM and drilling machine performances with rock brittleness", Eng. Geol., 65(4), 269-283. https://doi.org/10.1016/S0013-7952(01)00137-5   DOI
33 Nejati, H.R., Nazerigivi, A., Imani, M. and Karrech, A. (2020), "Monitoring of fracture propagation in brittle materials using acoustic emission techniques-A review", Comput. Concrete, Int. J., 25(1), 15-27. http://doi.org/10.12989/cac.2020.25.1.015   DOI
34 Kahraman, S. and Altindag, R. (2004), "A brittleness index to estimate fracture toughness", Int. J. Rock Mech. Min. Sci., 2(41), 343-348. https://doi.org/10.1016/j.ijrmms.2003.07.010   DOI
35 Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2018), "Effects of SiO2 nanoparticles dispersion on concrete fracture toughness", Constr. Build. Mater., 171, 672-679. https://doi.org/10.1016/j.conbuildmat.2018.03.224   DOI
36 Nejati, H.R. and Ghazvinian, A. (2014), "Brittleness effect on rock fatigue damage evolution", Rock Mech. Rock Eng., 47(5), 1839-1848. https://doi.org/10.1007/s00603- 013-0486-4   DOI
37 Panaghi, K., Golshani, A. and Takemura, T. (2015), "Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests", Geomech. Eng., Int. J., 9(6), 793-813. http://doi.org/10.12989/gae.2015.9.6.793   DOI
38 Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", Int. J. Rock Mech. Min. Sci., 46, 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006   DOI
39 Paul, B. (1968), "Macroscopic criteria for plastic flow and brittle fracture", Fracture, 2, 313-496.
40 Mardalizad, A., Scazzosi, R., Manes, A. and Giglio, M. (2018), "Testing and numerical simulation of a medium strength rock material under unconfined compression loading", J. Rock Mech. Geotech. Eng., 10(2), 197-211. https://doi.org/10.1016/j.jrmge.2017.11.009   DOI
41 Marji, M.F. (2014), "Numerical analysis of quasi-static crack branching in brittle solids by a modified displacement discontinuity method", Int. J. Solids Struct., 51(9), 1716-1736. https://doi.org/10.1016/j.ijsolstr.2014.01.022   DOI
42 Marji, M.F. (2015), "Simulation of crack coalescence mechanism underneath single and double disc cutters by higher order displacement discontinuity method", J. Central South Univ., 22(3), 1045-1054. https://doi.org/10.1007/s11771-015-2615-6   DOI
43 Lavrov, A. (2003), "The Kaiser effect in rocks: principles and stress estimation techniques", Int. J. Rock Mech. Min. Sci., 40(2), 151-171. https://doi.org/10.1016/s1365-1609(02)00138-7   DOI
44 Stefanov, Y.P. (2008), "Numerical modeling of deformation and failure of sandstone specimens", J. Min. Sci., 44(1), 64-72. https://doi.org/10.1016/0013-7944(94)00201-R   DOI
45 Nejati, H.R. and Moosavi, S.A. (2017), "A new brittleness index for estimation of rock fracture toughness", J. Min. Environ., 8(1), 83-91. https://doi.org/10.22044/JME.2016.579   DOI
46 Potyondy, D.O. (2012), "A flat-jointed bonded-particle material for hard rock", Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.
47 Altindag, R. (2000), "The role of rock brittleness on analysis of percussive drilling performance", Proceedings of 5th National Rock Mechanics Symposium, Turkey, pp. 105-112. [In Turkish]
48 Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011   DOI
49 Protodyakonov, M.M. (1962), "Mechanical properties and drillability of rocks", Proceedings of the 5th Symposium on Rock Mechanics, University of Minnesota Minneapolis, MN, USA, pp. 103-118.
50 Protodyakonov, M.M. (1963), "Mechanical properties and drillability of rocks", Proceedings of the 5th Symposium Rock Mechanics, University of Minnesota, pp. 103-118.
51 Wang, S.Y., Sloan, S.W., Sheng, D.C., Yang, S.Q. and Tang, C.A. (2014), "Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression", Int. J. Solids Struct., 51(5), 1132-1148. https://doi.org/10.1016/j.ijsolstr.2013.12.01   DOI
52 Xu, X., Wu, S., Gao, Y. and Xu, M. (2016), "Effects of microstructure and micro-parameters on Brazilian tensile strength using flat-joint model", Rock Mech. Rock Eng., 49(9), 3575-3595. https://doi.org/10.1007/s00603-016-1021-1   DOI
53 Szwedzicki, T. and Shamu, W. (1999), "The effect of material discontinuities on strength of rock samples", Proceedings of Australasian Institute of Mining and Metallurgy, 304(1), 23-28.
54 Aggelis, D.G., Soulioti, D.V., Sapouridis, N., Barkoula, N.M., Paipetis, A.S. and Matikas, T.E. (2011), "Acoustic emission characterization of the fracture process in fibre reinforced concrete", Constr. Build. Mater.als, 25, 4126-4131. https://doi.org/10.1016/j.conbuildmat.2011.04.049   DOI
55 Aggelis, D.G., Mpalaskas, A.C. and Matikas, T.E. (2013), "Acoustic signature of different fracture modes in marble and cementitious materials under flexural load", Mech. Res. Commun., 47, 39-43. https://doi.org/10.1016/j.mechrescom.2012.11.007   DOI
56 Ren, X., Chen, J.S., Li, J., Slawson, T.R. and Roth, M.J. (2011), "Micro-cracks informed damage models for brittle solids", Int. J. Solids Struct., 48(10), 1560-1571. https://doi.org/10.1016/j.ijsolstr.2011.02.001   DOI
57 Sagong, M. and Bobet, A. (2002)," Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39, 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8   DOI
58 Asadizadeh, M., Babanouri, N., Nowak, S. and Sherizah, T. (2021), "The evolution of dynamic energy during drop hammer testing of Brazilian disk with non-persistent joints: an extensive experimental investigation", Theor. Appl. Fract. Mech., p. 103162. https://doi.org/10.1016/j.tafmec.2021.103162   DOI
59 Basu, A., Mishra, D.A. and Roychowdhury, K. (2013), "Rock failure modes under uniaxial compression, Brazilian, and point load tests", Bull. Eng. Geol. Environ., 72(3-4), 457-475. https://doi.org/10.1007/s10064-013-0505-4   DOI
60 Blindheim, O.T. and Bruland, A. (1998), "Boreability testing, Norwegian TBM tunnelling 30 years of Experience with TBMs in Norwegian Tunnelling", Norwegian Soil and Rock Engineering Association, Publication, pp. 29-34.
61 Villaescusa, E. (2014), Geotechnical Design for Sublevel Open Stopping, CRC Press.
62 Wawersik, W. and Fairhurst, C. (1970), "A study of brittle rock fracture in laboratory compression experiments", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 7, 561-575.   DOI
63 Wu, S. and Xu, X. (2016), "A study of three intrinsic problems of the classic discrete element method using flat-joint model", Rock Mech. Rock Eng., 49(5), 1813-1830. https://doi.org/10.1007/s00603-015-0890-z   DOI
64 Yarali, O. and Soyer, E. (2011), "The effect of mechanical rock properties and brittleness on drillability", Scientif. Res. Essays, 6(5), 1077-1088. https://doi.org/10.5897/SRE10.1004   DOI
65 Yoshikawa, S. and Mogi, K. (1981), "A new method for estimation of the crustal stress from cored rock samples: laboratory study in the case of uniaxial compression", Tectonophysics, 74(3-4), 323-339. https://doi.org/10.1016/0040-1951(81)90196-7   DOI