• Title/Summary/Keyword: rock movement

Search Result 206, Processing Time 0.022 seconds

Numerical simulation on mining effect influenced by a normal fault and its induced effect on rock burst

  • Jiang, Jin-Quan;Wang, Pu;Jiang, Li-Shuai;Zheng, Peng-Qiang;Feng, Fan
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • The study of the mining effect influenced by a normal fault has great significance concerning the prediction and prevention of fault rock burst. According to the occurrence condition of a normal fault, the stress evolution of the working face and fault plane, the movement characteristics of overlying strata, and the law of fault slipping when the working face advances from footwall to hanging wall are studied utilizing UDEC numerical simulation. Then the inducing-mechanism of fault rock burst is revealed. Results show that in pre-mining, the in situ stress distribution of two fault walls in the fault-affected zone is notably different. When the working face mines in the footwall, the abutment stress distributes in a "double peak" pattern. The ratio of shear stress to normal stress and the fault slipping have the obvious spatial and temporal characteristics because they vary gradually from the higher layer to the lower one orderly. The variation of roof subsidence is in S-shape which includes slow deformation, violent slipping, deformation induced by the hanging wall strata rotation, and movement stability. The simulation results are verified via several engineering cases of fault rock burst. Moreover, it can provide a reference for prevention and control of rock burst in a fault-affected zone under similar conditions.

Analysis of Measured Vibration Data due to Rock Blasting and Crushing (암반발파 및 파쇄로 인한 진동값 측정과 분석)

  • Moon, Ka-Eun;Rhim, Hong-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.177-178
    • /
    • 2015
  • Various vibration caused by construction vehicles and equipment movement, rock blasting, and crushing obstacle occurs inevitably in construction sites. In this study, we measured the impact of vibration by blasting rock at construction sites, rock crushing, concrete crushing. The measuring instrument was installed in adjacent buildings and observed that blasting vibration differs depending on the charge weight, blasting distance, and the measuring position. The observation was maintained by allowable peak particle velocity standard according to each standards and references.

  • PDF

Petrographic Study on Mylonitic Granite in the Unbong-Ayoung Area (운봉(雲峰)-아영(阿英) 지역(地域)에서 나타나는 압쇄상화강암(壓碎狀花崗岩)에 대(對)한 암석기재학적(岩石記載學的) 연구(硏究))

  • Kim, Yong Jun;Kim, Jeong Bin;Dallmeyer, R.D.
    • Economic and Environmental Geology
    • /
    • v.20 no.2
    • /
    • pp.125-136
    • /
    • 1987
  • The characteristic features of mylonitic granite in the Unbong-Ayoung area is as follow; (1) Mylonitic granite is a shearing product from porphyritic granite of Namweon Granites. (2) This rock megascopically shows foliated texture, and their modal compositions according to classification of dynamically metamorphosed rock are correspond to blastomylonite. (3) This rock generated by dextral strike slip movement at deep level. (4) The geochronological data of hornblendes from this rock undertaken by $^{40}Ar/^{89}Ar$ method are 191Ma to 195Ma. (5) The geochronological data of this rock suggests that Namweon Granites might be a product of intrusion and crystallization at the late Triassic or the Jurassic.

  • PDF

A Case Study of Road Upheaval caused by Slope Movement, and Verification of Reinforcement using Real-Time Monitoring (암반비탈면 활동에 의한 도로 융기현상 사례 연구 및 실시간 모니터링을 이용한 대책공법 검증)

  • Lee, Jong-Hyun;Koo, Ho-Bon;Kim, Seung-Hyun;Kim, Seung-Hee
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.221-230
    • /
    • 2011
  • The movement of rock cut slopes may result in upheaval of an adjacent road. Because most cut slopes consist of rock, road upheaval due to the movement of a cut slope is a rare phenomenon in Korea. We found that the movement of rock slopes which are heavily weathered and with strongly developed weak zones is governed by circular failure of the overall rock formation rather than by failure along discontinuities. The results of a numerical analysis revealed that the application of a ubiquitous joint model in a continuum analysis is appropriate for anisotropic rocks (e.g., schist) and for slopes for which the stability is influenced by a particular discontinuity. The results of a field investigation and numerical analyses suggest that retaining walls and anchors should be used to stabilize rock slopes and that real-time monitoring equipment should be installed to assess the reinforcing effect of the remedial measures.

Remote monitoring technique for geotechnical structures using acoustic emission (미소파괴음을 이용한 지반구조물 원격계측기술)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Eui-Seob;Park, Chan;Jang, Hyun-Ick
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.946-956
    • /
    • 2008
  • Acoustic emission(AE) is low-energy seismic event associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. Rock slopes are usually large in scale and there are many discontinuities in rock mass. AE waves are strongly attenuated when they propagate through joints. Thus we should resolve the attenuation problem to monitor large volume. In this study, we developed waveguide which is composed of two different materials, cement mortar and stainless steel rod. And several laboratory tests on developed waveguide are performed to obtain generalized AE parameters to predict the failure stage in rock slope. Comparing field data with experimental data in laboratory tests, failure stage of rock slope can be evaluated. To verify and optimize the developed monitoring method, we are now carrying out the field application at a rock slope.

  • PDF

Reliability-based Optimization for Rock Slopes

  • Lee, Myung-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.3-34
    • /
    • 1998
  • The stability condition of rock slopes is greatly affected by the geometry and strength parameters of discontinuities in the rock masses. Rock slopes Involving movement of rock blocks on discontinuities are failed by one or combination of the three basic failure modes-plane, wedge, and toppling. In rock mechanics, practically all the parameters such as the joint set characteristics, the rock strength properties, and the loading conditions are always subject to a degree of uncertainty. Therefore, a reasonable assessment of the rock slope stability has to include the excavation of the multi-failure modes, the consideration of uncertainties of discontinuity characteristics, and the decision on stabilization measures with favorable cost conditions. This study was performed to provide a new numerical model of the deterministic analysis, reliability analysis, and reliability-based optimization for rock slope stability. The sensitivity analysis was carried out to verify proposed method and developed program; the parameters needed for sensitivity analysis are design variables, the variability of discontinuity properties (orientation and strength of discontinuities), the loading conditions, and rock slope geometry properties. The design variables to be optimized by the reliability-based optimization include the cutting angle, the support pressure, and the slope direction. The variability in orientations and friction angle of discontinuities, which can not be considered in the deterministic analysis, has a greatly influenced on the rock slope stability. The stability of rock slopes considering three basic failure modes is more influenced by the selection of slope direction than any other design variables. When either plane or wedge failure is dominant, the support system is more useful than the excavation as a stabilization method. However, the excavation method is more suitable when toppling failure is dominant. The case study shows that the developed reliability-based optimization model can reasonably assess the stability of rock slopes and reduce the construction cost.

  • PDF

Scaled Test on the Behavior of the Toe of Drilled Shaft on Rock Mass (암반에 근입된 말뚝의 선단 거동 특성에 관한 축소모형시험 연구)

  • Park, Woan-Suh;Choi, Se-Keun;Jeon, Seok-Won;Han, Yong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1166-1171
    • /
    • 2008
  • Despite of the increasing number of the application of drilled shaft piles in construction site, most studies on pile capacity have been focused on the side shear resistance. But it is common that the drilled shaft is socketed on the rock so as to use its bearing resistance. The prediction of the end movement and characteristics of the bearing capacity of the pile is great important as well. Therefore, a series of scaled model tests were carried out in order to study the characteristics of the bearing capacity on rock mass. The material of the test block was cement mortar which was mixed with sand, cement and water, and the size of a test block size was $240{\times}240{\times}240mm$. The axial load was applied by a miniaturized pile of 45mm in diameter and flat jacks and steel plate were used for confinement to simulate the real underground loading conditions. The relation of load-displacement was measured in various different conditions of rock mass such as strength, discontinuity of the rock mass and in-situ stress, so q-w curves of the end of the pile were presented for each condition.

  • PDF

The influence of magmatic rock thickness on fracture and instability law of mining surrounding rock

  • Xue, Yanchao;Sun, Wenbin;Wu, Quansen
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.547-556
    • /
    • 2020
  • An understanding of the influence of MR (Magmatic Rock) thickness on the surrounding rock behaviors is essential for the prevention and management of dynamic disasters in coal mining. In this study, we used FLC3D to study the breaking and instability laws of surrounding rock with different MR thicknesses in terms of strata movement, stress and energy. The mechanism of dynamic disasters was revealed. The results show that the thicker the MR is, (1) the smaller the subsidence of the overlying strata is, but the subsidence span of the overlying strata become wider, and the corresponding displacement deformation value of the basin edge become smaller. (2) the slower the growth rate of abutment pressure in front of the working face is, but the peak value is smaller, and the influence range is larger. The peak value decreases rapidly after the breaking, and the stress concentration coefficient is maintained at about 1.31. (3) the slower the peak energy in front of coal wall, but the range of energy concentration increases (isoline "O" type energy circle). Finally, a case study was conducted to verify the disaster-causing mechanism. We anticipate that the research findings presented herein can assist in the control of dynamic hazards.

Study on Habitat Selection of Odontobutis interrupta using PIT Telemetry (PIT telemetry를 이용한 얼록동사리의 서식지 선택 연구)

  • Jun-Wan Kim;Kyu-Jin Kim;Beom-Myeong Choi;Ju-Duk Yoon;Min-Ho Jang
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.294-304
    • /
    • 2022
  • This study carried out from March 2021 to October 2021 in the upper part (St. 1) and middle part (St. 2) section of Yongsu stream, a branch of the Geum river, using PIT telemetry to understand the movement patterns and habitat characteristics of Odontobutis interrupta, a Korean endemic species. O. interrupta collection was used kick net (5×5 mm) and fish trap (5×5 mm). After collecting fish, PIT tag insertion was performed immediately in the site. Reader (HPR Plus Reader, biomark, USA) and portable Antenna (BP Plus Portable Antenna, biomark, USA) were used for detection of fish to monitoring the tagged O. interrupta. As a result of PIT telemetry applied to 70 individuals, mean movement distance was 36.5 (SE, ±6.6) m. There was a significant difference between total length and movement distance (P≤0.05). O. interrupta was mainly identified in average water depth, 36.2±1.9 cm, average water velocity, 0.03±0.07 m s-1 and average distance from watershed, 4.4±0.3 m. Extent of rock used for habitat was varied from 32 to 4,000 cm2. There was no statistical difference between the area of the first selected rock and the area of the after selected rock (P>0.05). but there was significant difference between total length and the area of the rock except for detection before 24 hours (P<0.01). Therefore, to restore the habitat, it is considered necessary to create various substrate structures by providing various habitat environments (water depth, flow rate, stone, etc.) for each individual size.