• Title/Summary/Keyword: rock joint grouting

Search Result 31, Processing Time 0.027 seconds

The Effect of Cement Milk Grouting on the Deformation Behavior of Artifcial Rock Joints (시멘트현탁액 주입에 의한 신선한 암석절리의 역학적 특성 변화)

  • 김태혁;이정인
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.180-195
    • /
    • 2000
  • Grouting has been practiced as a reliable technique to improve the mechanical properties of rock mass. But, the study of ground improvement by greeting is rare especially in jointed rock mass. In this study, joint compression test and direct shear test were performed on pure rock joint and cement milk grouted rock joint to examine the grouting effect on the property of rock joint. In the pure rock joint compression test, joint closure varied non-linearly with normal stress. But after cement milk grouting, the normal deformation characteristics of the joint was linear at the low normal stress level. As normal stress increased. deformation of the sample rapidly increased due to the stress concentration at the joint asperities. Peak shear strength of the grouted joint in low normal stress was higher than that of non-grouted joint due to the cohesion, decreased exponetially as the grout thickness increased. Thus after cement milk grouting, the failure envelope modified to a curve that has cohesion due to grout material hydration with decreased friction angle. Shear stiffness and peak dilation angle of the grouted joint decreased as the grout thickness increased. The peak shear strength from the direct shear test on grouted rock joint was represented by an empirical equation as a fuction of grout thickness and roughness mean amplitude.

  • PDF

Numerical analyses using CFD on the pressure losses of the grout flow with variation of joint roughness and grout features (전산유동역학을 이용한 절리 거칠기 및 주입재 특성에 따른 그라우트 주입 시 압력 손실 해석)

  • Sagong, Myung;Ryu, Sung-ha
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.989-1002
    • /
    • 2018
  • Grouting for the rock joint is to strengthen the rock strata by infiltrating cement grout materials into the rock joints. Grouting is one of a field of study which is difficult to develop deterministic and quantitative design approach because of multiphase behaviors of grout materials and 3 dimensional features of rock joints. Therefore, GIN (Grouting Intensity Number) can be a good index with appropriate monitoring of pressure and volume of grout. In this paper, we investigate the effects of joint roughness (JRC) and rheology of cement material during the infiltration of cement grout material into rock joint through CFD (computational fluid dynamics) analyses. With rough joint surface and increase of WC ratio, the frictional resistance during the grouting increases. The results have been summarized with polynomial correlations.

Assessment of elastic-wave propagation characteristics in grouting-improved rock mass around subsea tunnels (해저터널 주변 그라우팅 보강암반의 탄성파 전달특성 평가)

  • Kim, Ji-Won;Hong, Eun-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • Grouting is frequently used before the construction of subsea tunnels to mitigate problems that can occur in weak ground zones such as joints, faults or unconsolidated settlements during construction. The grout material injected into rock mass often flows through the discontinuities present in the host rock and hence, joint properties such as its distribution, roughness and thickness greatly affect the properties of grouting-improved rocks. The grouting-improved zones near subsea tunnels are also subjected to high water pressures that can cause long-term weathering in the form of changes in grout microstructure and crack formation and lead to subsequent changes in ground properties. Therefore, an assessment method is needed to accurately measure changes in the grouting-improved zones near subsea tunnels. In this study, the elastic wave propagation characteristics in grouting-improved rocks were tested for various axial stress levels, curing time, joint roughness and thickness conditions under laboratory conditions and the results were compared with wave velocity standards in different Korean rock mass classification systems to provide a basis for inferring improvement in grouted rock-mass.

Trends in Predicting Groutability Based on Correlation Analysis between Hydrogeological and Rock Engineering Indices: A Review (수리지질 및 암반공학 지수 간 상관분석을 통한 절리암반 내 그라우트 주입성 예측 연구 동향: 리뷰논문)

  • Kwangmin Beck;Seonggan Jang;Seongwoo Jeong;Seungwoo Jason Chang;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.307-322
    • /
    • 2023
  • Rock-mass grouting plays a crucial role in the construction of dams and deep caverns, effectively preventing seepage in the foundations, enhancing stability, and mitigating hazards. Most rock grouting is affected by hydrogeological and rock engineering indices such as rock quality designation (RQD), rock mass quality (Q-value), geological strength index (GSI), joint spacing (Js), joint aperture (Ap), lugeon value (Lu), secondary permeability index (SPI), and coefficient of permeability (K). Therefore, accurate geological analysis of basic rock properties and guidelines for grouting construction are essential for ensuring safe and effective grouting design and construction. Such analysis has been applied in dam construction sites, with a particular focus on the geological characteristics of bedrock and the development of prediction methods for grout take. In South Korea, many studies have focused on grout injection materials and construction management techniques. However, there is a notable lack of research on the analysis of hydrogeological and rock engineering information for rock masses, which are essential for the development of appropriate rock grouting plans. This paper reviews the current state of research into the correlation between the grout take with important hydrogeological and rock engineering indices. Based on these findings, future directions for the development of rock grouting research in South Korea are discussed.

Field Experiments on the Cutoff Grouting Around Waterway Tunnel (도수터널의 차수 그라우팅 현장시험)

  • 김덕근;김교원
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.81-99
    • /
    • 2001
  • In order to clarify an effect of the cutoff grouting, a series of field experiments were performed during construction of the waterway tunnel from the River Gilancheon(Andong) to the Youngcheon dam. The experiments were conducted in three different ways based on the grouting time in the construction sequence, i.e., the pre-grouting, after-grouting and consolidation grouting tests. And those were also planned to compare the efficiency of grouting in relation to the material types of grout, base rock types and other geologic factors such as discontinuities, depth and direction of grouting holes, and number of grouting stages. Among the materials of grout employed in the experiments, such as a common Portland cement, a micro-cement, a micro-cement with sodium silicate, and a urethane, the urethane was the most effective as the cutoff grouting. And for the same grout material, the pre-grouting was more effective to cutoff the water inflow comparing to the after-grouting and the consolidation grouting. For the rock types, the grouting efficiency in the sedimentary rocks as a base rock was less than the other rocks such as granite and volcanic rocks, which is believed due to the smaller separation of joints and the abundance of infilling materials in the joints developed in the sedimentary rocks. There was no direct relationship between the total RMR value of the rock mass and the grouting efficiency, however, the joint separation which is one of the RMR criteria is believed to have positive relation to the grouting efficiency. And the direction of the grouting holes might not so much affect on the grouting efficiency while increasing the number of grouting stage showed the better results.

  • PDF

The Effect of Cement Milk Grouting on the Deformation Behavior of Jointed Rock Mass (시멘트현탁액 주입에 의한 절리암반의 역학적 특성 변화)

  • 김태혁;이정인
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.331-343
    • /
    • 2003
  • Though the Grouting has been in use for a long time, it is still regarded as an technique rather than engineering. The study of ground improvement by grouting is rare especially in jointed rock mass. In this study, biaxial compression tests were performed in the jointed rock mass models with .ough surfBce joints assembled with blocks before and after grouting. The load-deformation curves of the jointed rock masses showed a non-linear relationship before grouting but showed a relatively linear deformaion behavior after grouting. Improvement ratio (deformation modulus after grouting/deformation modulus before grouting) decreased with increasing joint spacing and lateral stress. Improvement ratio decreased exponentially with increasing deformation modulus of the rock mass model before grouting. Three-dimensional FDM analysis was performed to a highway tunnel case using experimental data of grouted rock. The convergence of the tunnel predicted after grouting by the numerical modelling coincided with those attained from the field measurement.

Evaluation on the leakage of ground-water through fractured rock under a spillway (여수로 구조물 하부 암반 내 발달한 절리들을 통한 지하수 누수량 분석)

  • Kim, Hyoung-Soo;Lee, Ju-Hyun;Jeong, Ui-Jin;Lee, Joong-Woo
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.129-134
    • /
    • 2006
  • Recently, spillways are need to control stable water level for supporting main dams because of floods by unusual change of weather such as Typhoon Rusa. This study has been focused on the amount of leakage through the rock mass distributed fractures and joints under the opened emergency spillway. It is very important to evaluate the amount of leakage as these affect stability of spillway by interaction between effective stress and pore pressure. The commercial program MAFIC has been used for analyzing groundwater flow in fractured rock mass. The results showed that the values of range, average and deviation of leakage were 2.85∼3.79×10-1, 3.32×10-1 and 1.70×10-2 m3/day/m2 respectively. Secondary, we have estimated the effect of grouting after the transmissivity(Tf) of joint 1 as main pathway of leakage known from above results was changed from 1.78×10-7 to 1.59×10-9 m2/s. The results showed that the values of range, average and deviation of leakage were 7.80×10-4∼1.53×10-3, 1.18×10-3 and 1.32×10-4 m3/day/m2 respectively. As the result, the amount of leakage after grouting has been decreased by a ratio of 1 to 277.

  • PDF

Analysis of ground reinforcement effect using fracturing grouting (침투 및 할렬주입에 의한 지반보강 효과에 관한 연구)

  • Lee, J.S.;Lee, I.M.;Chung, H.S.;Lee, D.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.349-360
    • /
    • 2003
  • A practical modeling approach has been proposed in this study to better understand the behavior of penetration grouting which is normally applied to the jointed rock masses to increase the bearing capacity and to reduce the ground water flow into the tunnel. Based on Bingham model together with a steady-state flow of the grout, penetration model is simulated in the commercial package called UDEC and, injection pressure as well as joint thickness are found to be the main parameters to determine the range of grout spread. Another numerical model on fracturing grouting is also suggested and, in this case, the tensile strength as well as cohesion of the rock masses are proven to be the major factors to decide the fracturing mechanism of the rock masses. The reinforcement effect of the grout-reinforced rock masses is calculated from the suggested algorithm on orthotropic material model and it is found that the directional stiffness of reinforced rock masses is increased up to 3 to 4 times compared with original jointed rock masses. Future work will be concentrated on the water control around the tunnel by the grout injection and a model test will also be performed to verify the suggested methods developed in this study.

  • PDF

A proposal and evaluation of a revised GIN method (수정 GIN 기법의 제안 및 검증)

  • Sagong, Myung;Park, Youngjin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.151-165
    • /
    • 2021
  • Grouting, which is applied for the increase of ground strength and the decrease of permeability, is complex process because of several reasons, so the process needs to be elaborated. Injection process in consideration of ground condition and optimization of grouting sequence is essential. In this study, GIN (Grouting Intensity Number), multiple of injected grout volume and pressure, is revised to consider injection pressure reduction and joint opening during grouting process. A revised GIN process is evaluated through a field test. A revised GIN, considering ground condition, injection pressure, follows GIN envelope and produces rational grouting process. The result of a revised GIN reduces permeability of the ground in the order of 10-1~10-2 cm/sec.

Time-dependent characteristics of viscous fluid for rock grouting (암반 그라우팅을 위한 점성유체의 시간의존 특성 분석)

  • Lee, Jong-Won;Kim, Ji-Yeong;Weon, Jo-Hyun;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.465-481
    • /
    • 2022
  • Rock grouting is important to improve the waterproof efficiency and mechanical strength of rock medium with joint for utilizing the underground rock space such as tunnel. The grouting materials typically has been used the cement materials, which represent Bingham fluid model. This model can express the relationship of viscosity and yield strength. In addition, it is dependent with elapsed time. The grouting injection performance can be deteriorated with an increase of viscosity and yield strength in the grouting process if the time dependence is ignored. Therefore, in this study, the characteristics of viscosity and yield strength were investigated according to water-cement ratio and time dependence in the laboratory test. Numerical simulation was carried out to investigate the grouting performance according to the time dependence of characteristics in terms of the viscosity model. Given the results, the grouting injected distance and cumulative grout volume were significantly decreased when the time dependence of grouting material was considered. This study, considering the characteristics according to the time dependence of viscosity and yield strength, will be meaningful to the design of grouting injection in field applications.