Browse > Article
http://dx.doi.org/10.9711/KTAJ.2018.20.6.989

Numerical analyses using CFD on the pressure losses of the grout flow with variation of joint roughness and grout features  

Sagong, Myung (Advanced Railroad Civil Engineering Division, Korea Railroad Research Institute)
Ryu, Sung-ha (Facility Team, Poongsan Corporation)
Publication Information
Journal of Korean Tunnelling and Underground Space Association / v.20, no.6, 2018 , pp. 989-1002 More about this Journal
Abstract
Grouting for the rock joint is to strengthen the rock strata by infiltrating cement grout materials into the rock joints. Grouting is one of a field of study which is difficult to develop deterministic and quantitative design approach because of multiphase behaviors of grout materials and 3 dimensional features of rock joints. Therefore, GIN (Grouting Intensity Number) can be a good index with appropriate monitoring of pressure and volume of grout. In this paper, we investigate the effects of joint roughness (JRC) and rheology of cement material during the infiltration of cement grout material into rock joint through CFD (computational fluid dynamics) analyses. With rough joint surface and increase of WC ratio, the frictional resistance during the grouting increases. The results have been summarized with polynomial correlations.
Keywords
Grouting; GIN; Rock joint; CFD analyses;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Cravero, M., Ferrero, A.M., Iabichino, G. (2001), "Evaluation of joint roughness and dilatancy of schistosity joints", Rock mechanics - a challenge for society Proceedings of Eurock 2001, Espoo Finland, 4-7 June 2001, pp. 217-223.
2 Han, S., Yea, G., Kim, H. (2014), "Improvement effects of cement grouting using vibration method through a field test", Journal of the Korea Geo-Environmental Society, Vol. 15, No. 5, pp. 23-29.
3 Jung, H.S., Han, J.K., Moon, J.S., Yoon, H.H. (2017), "Grouting performance for the reinforcement of operating railway roadbed", Journal of the Korean Geo-Environmental Society, Vol. 18, No. 12, pp. 13-23.   DOI
4 Kim, D.Y., Lee, H.S., Lee, S.J., Sim, B.K., Jung, J.H. (2014), "Case study on cut-off grouting for subsea tunnel construction using automated multi grouting system and grouting design software", Proceedings of the World Tunnel Congress 2014 - Tunnels for a better life Foz Do Iguacu, Brazil.
5 Park, I., Kim, D. (2017), "A study of field mixing ratio using bio-grouting injection material", Journal of the Korean Geosynthetics Society, Vol. 16, No. 2, pp. 47-54.   DOI
6 Park, S.Y., Shim, H.G., Kang, H.J., Lim, O.B., Sami, G.F., Kim, Y.S. (2017), "A study on hybrid grout material for reservoir embankment reinforcement", Journal of the Korean Geosynthetics Society, Vol. 16, No. 3, pp. 21-30.   DOI
7 Rosquoet, F., Alexis, A., Khelidj, A., Phelipot, A. (2003), "Experimental study of cement grout: Rheological behavior and sedimentation", Cement and Concrete Research, Vol. 33, No. 5, pp.713-722.   DOI
8 Yang, Z.Y., Lo, S.C., Di, C.C. (2001), "Reassessing the joint roughness coefficient (JRC) estimation using $Z_2$", Rock Mechanics and Rock Engineering, Vol. 34, No. 3, pp. 243-251.   DOI
9 Turcote, L., Savard, B., Lombardi, G., Jobin, H. (1994), "The use of stable grout and G.I.N. technique in grouting for dam rehabilitation", Annual Meeting Canadian Dam Safety Conference CSDA and CANCOLD Winnipeg, Manitoba, pp. 137-161.
10 Tse, R., Cruden, D. (1979), "Estimating joint roughness coefficient", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 16, No. 5, pp. 303-307.   DOI