• Title/Summary/Keyword: rock and concrete strength

Search Result 128, Processing Time 0.032 seconds

Integrating the Hoek-Brown Failure Criterion into the Holmquist-Johnson-Cook Concrete Material Model to Reflect the Characteristics of Field Rock Mass in LS-DYNA Blast Modeling (LS-DYNA 발파 모델링에서 현장암반의 특성을 반영하기 위한 Hoek-Brown 파괴기준과 Holmquist-Johnson-Cook 콘크리트 재료모델의 접목)

  • Choi, Byung-Hee;Sunwoo, Choon;Jung, Yong-Bok
    • Explosives and Blasting
    • /
    • v.38 no.3
    • /
    • pp.15-29
    • /
    • 2020
  • In this paper the Hoek-Brown (HB) failure criterion is integrated into the Holmquist-Johnson-Cook (HJC) concrete material model to reflect the inherent characteristics of field rock masses in LS-DYNA blast modeling. This is intended to emphasize the distinctive characteristics of field rock masses that usually have many geological discontinuities. The replacement is made only for the static strength part of the HJC material model by using a statistical curve fitting technique, and its procedure is described in detail. An example is also given to illustrate the use of the obtained HJC material model. Computation is performed for a plane strain model of a single-hole blasting on a field limestone by using the combination of the fluid-structure interaction (FSI) technique and the multi-material arbitrary Lagrangian Eulerian (MMALE) method in LS-DYNA.

Side Shear Resistance of Drilled Shafts in Rock (암반에 근입된 현장타설말뚝의 주면지지력)

  • Kwon, Oh-Sung;Kim, Byung-Chul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.611-618
    • /
    • 2005
  • In this research, the effect of rock mass weathering on the side shear resistance of drilled shaft socketed into weathered rock was investigated. For that, a database of 23 cast-in-place concrete piles with diameters varying from 400mm to 1,500mm were socketed into weathered igneous/meta-igneous rock at four different sites. The static axial load tests were performed to examine the resistant behavior of the piles, and a comprehensive field/laboratory testing program at the field test site was also performed to describe the in situ rock mass conditions quantitatively. No correlation was found between the compressive strengths of intact rock and the side shear resistance of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. $E_m,\;E_{ur},\;_{plm}$, RMR, RQD, j) was found to be highly correlated with the side shear resistance, showing the coefficients of correlation greater than 0.7 in most cases. Additionally, the applicability of existing methods for the side shear resistance of piles in rock was verified by comparison with the field test data. The existing empirical relations between the compressive strength of intact rock and the side shear resistance(Horvath (1982), Rowe & Armitage(1987) etc.) appeared to overestimated the side shear resistance of all piles tested in this research unless additional consideration on the effect of rock mass weathering or fracturing was applied. The existing methods which consider the effect of rock mass condition were modified and/or extended for weathered rock mass where mass factor j is lower than 0.1, and RQD is below 50%.

  • PDF

Selection of Suitable Aggregates for Long-term Stability of Concrete (콘크리트 장기 안정성을 위한 골재의 선택)

  • Yang, Dong-Yoon;Lee, Dong-Young
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.519-525
    • /
    • 1995
  • Recently, there have been several cases of serious accidents on concrete structure resulting from rapid deterioration of concrete strength. On the view point of long term stability of concrete, deterioration of concrete strength is mostly due to chemical reaction between alkali and reactive aggregates (alkali-aggreagte reaction; AAR) in concrete rather than a problem of execution. For long-term stability of concrete, concrete aggregates must be carefully selected. Some of rocks used for concrete aggregates contain deleterious minerals reactive to alkali components in concrete. Most of AAR result from chemical reaction between alkali components and reactive silica minerals in aggregates (so called alkali-silica reaction; ASR). The silica minerals are as follows; quartz with seriously distorted lattice structure, volcanic glass, chalcedony, opal, cristobalite, tridymite, etc. ASR may cause expansion and cracks, further collapse in concrete structure, in a few years. In case of crushed aggregates, only a part of rock mass without reactive minerals must be produced in aggregates mine after thorough examination of the distribution of rocks with reactive minerals. In case of natural aggregates, the total content of reactive minerals must be calculated, if, the content is more than 20%, the rate should be lower by mixing other non-reactive crushed- or natural aggregates. If it is obliged to use concrete aggregates all containing deleterious minerals in a discrete area, they must be used with low alkali cement Even if it is low quality in the chemical properties, aggregates with suitable range in the physical properties can be utilized as the aggregate of other purposes.

  • PDF

Evaluation on the Physical properties of Ultra Fine Cement for Grouting Materials (초미립자 시멘트의 지반 주입재로서의 특성 평가)

  • Park Won-Chun;Mun Kyoung-Ju;Jung Jong-Ju;Soh Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.301-304
    • /
    • 2004
  • The objective of this study is to evaluate the physical properties of ultra fine-ground cement for grouting materials. This study investigates the compressive strength of cement paste, homogenized gel and solidified soil matrix with ultra fine-ground cement. Also It is estimated the injection properties of ultra fine-ground cement. From the test results, the compressive strength of ultra fine-ground cement is higher than that of portland cement. The injection properties are sufficient to apply silt-sand soil and minute-cracked rock bed. Also the properties of soil stability like water permeability coefficient are enough to be adapted various grouting specification.

  • PDF

Linear cutting machine test for assessment of the cutting performance of a pick cutter in sedimentary rocks (퇴적층 암석의 픽 커터 절삭성능 평가를 위한 선형절삭시험)

  • Jeong, Hoyoung;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.161-182
    • /
    • 2018
  • We carried out a series of linear cutting machine tests to assess the cutting performance of a pick cutter in sedimentary rock. The specimens were Linyi sandstone from China and Concrete (rock-like material, conglomerate). Using the small scaled LCM system, we estimated the cutter force and specific energy under different cutting conditions. The cutter forces (cutting and normal) increased with penetration depth and cutter spacing in two rock types, and it was affected by the strength of specimens. On the other hand, the ratio of the peak cutter force to the mean cutter force was influenced by cutting characteristic and composition of rock rather than rock strength. The cutting coefficient was affected by the friction characteristic between rock and pick cutter rather than the cutting conditions. Therefore, the optimal cutting angle can be determined by considering of cutting coefficient and resultant force of pick cutter. The optimum cutting condition was determined from the relationship between the specific energy and cutting condition. For two specimens, the optimum s/p ratio was found to be two to four, and the specific energy decreased with the penetration depth. The result from this study can be used as background database to understand the cutting mechanism of a pick cutter, also it can be used to design for the mechanical excavator.

Numerical Analyses on the Behavioral Characteristics of Side of Drilled Shafts in Rocks and Suggestion of Design Charts (수치해석을 통한 암반에 근입된 현장타설말뚝의 주면부 거동특성 분석 및 설계차트 제시)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.407-419
    • /
    • 2006
  • Situations where support is provided solely in shaft resistance of drilled shafts are where the base of the drilled hole cannot be cleaned so that it is uncertain that any end bearing support will be developed. Alternatively, where sound bed rock underlies low strength overburden material, it may be possible to achieve the required support in end bearing on the rock only, and assume that no support is developed in the overburden. However, where the drilled shaft is drilled some depth into sound rock, a combination of side wall resistance and end bearing can be assumed. Both theoretical and field studies of the performance of rock socketed drilled shafts show that the major portion of applied load is usually carried in side wall resistance. Normal stress at the rock-concrete interface is induced by two mechanisms. First, application of a compressive load on the top of the pile results in elastic dilation of the concrete, and second, shear displacement at the rough surface of the drilled hole results in mechanical dilation of the interface. If the stiffness of the material surrounding the socket with respect to normal displacement is constant, then the normal stress will increase with increasing applied load, and there will be a corresponding increase in the shear strength. In this study, the numerical analyses are carried out to investigate the behavioral characteristics of side of rock socketed drilled shafts. The cause of non-linear head load-settlement relationship and failure mechanism at side are also investigated properly and the design charts are suggested and verified for the leading to greater efficiency and reliability in the pile design.

End Bearing Behavior of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 선단지지거동)

  • Kwon, Oh Sung;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.197-203
    • /
    • 2008
  • The end bearing behavior of piles socketed in weathered/soft rock is generally dependent upon the rock mass conditions with fractures rather than the strength of intact rock. Therefore, a database which includes 13 load tests performed on cast-in-place concrete piles and soil investigation data at the field test sites was made first, and new empirical relationships between the base reaction modulus of piles in rock and rock mass properties were developed. No correlation was found between the compressive strengths of intact rock and the base reaction modulus of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. Pressuremeter modulus and limit pressure, RMR, RQD) was found to be highly correlated with the base reaction modulus, showing the coefficients of correlation greater than 0.7 in most cases. In addition, the applicability of existing methods for the end bearing capacity of piles in rock was verified by comparison with the field test data.

An Experimental Study on the Drying Shrinkage and Creep of High Strength Eco Lightweight Aggregate Concrete (고강도 에코인공경량골재콘크리트의 건조수축 및 크리프에 관한 실험적 연구)

  • Lee, Jin-Woo;Park, Hee-Gon;Kim, Woo-Jae;Bae, Yeoun-Ki;Lee, Hyoung-Woo;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.425-428
    • /
    • 2008
  • To use lightweight aggregate concrete with the structural material, it was need to evaluate property of mechanic and drying shrinkage and creep of the lightweight aggregate concrete, but these weren't. So the purpose of this study which it sees follows the mechanical property of the eco lightweight aggregate concrete according to the water binder ration in the high strength concrete. Eco lightweight aggregate was made with clay and crushed rock in this study. To make experiment, water binder ratio was divided 35% and 39%. And the fresh concrete properties were that slump flow was 500${\pm}$50mm, air contents was 2.0${\pm}$1.0%. It evaluated the hold a drying shrinkage and the creep the effect, it analyzed quality and reliability of the eco lightweight aggregate concrete.

  • PDF

A Study on Field Testing Methods for the Shotcrete Quality Control of Large Underground Spaces (지하 대공간 숏크리트 품질관리를 위한 현장강도 시험기술에 관한 연구)

  • Chang, Seok-Bue;Lee, Soung-Woo;Hong, Eui-Joon;Moon, Sang-Jo
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.405-412
    • /
    • 2006
  • It is well known that shotcrete is the most important support member for the construction of large underground spaces. Generally, the strength of the field shotcrete is heavily dependent on the field mixing and spraying conditions so that it is different from the strength of the shotcrete mixed in laboratories. As a support member, the early strength of shotcrete unlike concrete is very important to the initial stabilization of the underground spaces. Therefore, the field methods to efficiently test the early strength of shotcrete have been highly required. This paper aimed to verify the pneumatic pin penetration test and the point load test for measuring the early strength of the field shotcrete. As a result of the experiments through a series of uniaxial compression, pin penetration, and point load tests for the range of the early shotcrete strength, two equations to estimate reliably the uniaxial compressive strength by the pin penetration and the point load tests were acquired.

Effect of Steel-fiber Distribution on Flexural Strength and Toughness of Shotcrete-mimicked Concrete Specimen (숏크리트 모사 콘크리트 공시체에 혼합된 강섬유의 분산도가 휨강도 및 인성에 미치는 영향)

  • Park, Sung-Sik;Kim, Sang-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.53-62
    • /
    • 2013
  • A 5-20 cm thick shocrete has been routinely constructed for NATM tunneling method to stabilize and confine the excavated rock of tunnel construction site. A $40kg/m^3$ of steel fibers are usually mixed into such shotcrete but these steel fibers may not be evenly distributed depending on shotcrete machines, mixing ratios and excavated rock conditions. In this study, square column shotcrete-mimicked concrete specimens of $15cm{\times}15cm{\times}55cm$ were prepared with 5 equal layers and 5 or 20% cement ratio. The specimens were prepared with different reinforced-patterns: non-reinforced, middle layer-reinforced, 1, 3, and 5 layers-reinforced, or all layers reinforced. The specimens were air-cured for 7 days and tested for flexural strength. The influence of steel-fiber distribution on flexural strength and toughness of shotcrete-mimicked concrete specimens was investigated. In the case of a specimen with cement ratio of 20%, a flexural strength increased as a number of fiber-reinforced layer increased. The flexural strength of one-layer reinforced specimen showed 20% less than that of evenly fiber-distributed specimen. On the other hand, a specimen with cement ratio of 5% decreased as the number of fiber-reinforced layers increased. A toughness index increased as the number of fiber-reinforced layers increased, regardless of cement ratios. The toughness index of evenly fiber-distributed specimen showed 2-3 times as large as that of one-layer reinforced specimen.