• Title/Summary/Keyword: robustness design

Search Result 1,207, Processing Time 0.023 seconds

Consequence-based robustness assessment of a steel truss bridge

  • Olmati, Pierluigi;Gkoumas, Konstantinos;Brando, Francesca;Cao, Liling
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.379-395
    • /
    • 2013
  • Aim of this paper is to apply to a steel truss bridge a methodology that takes into account the consequences of extreme loads on structures, focusing on the influence that the loss of primary elements has on the structural load bearing capacity. In this context, the topic of structural robustness, intended as the capacity of a structure to withstand damages without suffering disproportionate response to the triggering causes while maintaining an assigned level of performance, becomes relevant. In the first part of this study, a brief literature review of the topics of structural robustness, collapse resistance and progressive collapse takes place, focusing on steel structures. In the second part, a procedure for the evaluation of the structural response and robustness of skeletal structures under impact loads is presented and tested in simple structures. Following that, an application focuses on a case study bridge, the extensively studied I-35W Minneapolis steel truss bridge. The bridge, which had a structural design particularly sensitive to extreme loads, recently collapsed for a series of other reasons, in part still under investigation. The applied method aims, in addition to the robustness assessment, at increasing the collapse resistance of the structure by testing alternative designs.

Robust Design of Gate Locations and Process Parameters for Minimizing Injection Pressure of an Automotive Dashboard (자동차 대시보드의 사출압력 최소화를 위한 게이트 위치와 공정조건의 강건설계)

  • Kim, Kwang-Ho;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.73-81
    • /
    • 2014
  • In this paper, multiple gate locations and process conditions under concern are automatically optimized by considering robustness to minimize the injection pressure required to mold an automotive dashboard. Computer simulation-based experiments using orthogonal arrays(OA) and a design-range reduction algorithm are consolidated into an iterative search scheme, which is then used as a tool for the optimization process. The robustness of a design is evaluated using an OA-based simulation of process fluctuations due to noise as well as the signal-to-noise ratio. The optimal design solution for the automotive dashboard shows that the robustness of the injection pressure is significantly improved when compared to the initial design. As a result, both the die clamping force and the pressure distribution in the part cavity are also much improved in terms of their robustness.

Robust Optimization of Automotive Seat by Using Constraint Response Surface Model (제한조건 반응표면모델에 의한 자동차 시트의 강건최적설계)

  • 이태희;이광기;구자겸;이광순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.168-173
    • /
    • 2000
  • Design of experiments is utilized for exploring the design space and for building response surface models in order to facilitate the effective solution of multi-objective optimization problems. Response surface models provide an efficient means to rapidly model the trade-off among many conflicting goals. In robust design, it is important not only to achieve robust design objectives but also to maintain the robustness of design feasibility under the effects of variations, called uncertainties. However, the evaluation of feasibility robustness often needs a computationally intensive process. To reduce the computational burden associated with the probabilistic feasibility evaluation, the first-order Taylor series expansions are used to derive individual mean and variance of constraints. For robust design applications, these constraint response surface models are used efficiently and effectively to calculate variances of constraints due to uncertainties. Robust optimization of automotive seat is used to illustrate the approach.

  • PDF

New indices of structural robustness and structural fragility

  • Andre, Joao;Beale, Robert;Baptista, Antonio M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1063-1093
    • /
    • 2015
  • Structural robustness has become an important design variable. However, based on the existing definitions of structural robustness it is often difficult to analyse and evaluate structural robustness, and sometimes not efficient since they mix structural robustness with several other structural variables. This paper concerns the development of a new structural robustness definition, and structural robustness and structural fragility indices. The basis for the development of the new indices is the analysis of the damage energy of structural systems for a given hazard scenario and involves a criterion to define an "unavoidable collapse" state. Illustrative examples are given detailing the steps and calculations needed to obtain values for both the structural robustness and the structural fragility indices. Finally, this paper presents the main advantages of the newly proposed definition and indices for the structural risk analysis over existing traditional methods.

LQ-servo design to command following and output-disturbance rejection (명령추종과 출력측 외란제거를 위한 LQ-servo 설계)

  • Yun, Seong-O;Suh, Byung-Suhl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.443-449
    • /
    • 1997
  • LQ-servo design procedure introduced by Athans is a method using a partial states feedback and an output feedback in order to improve the poor performance robustness of the LQR as well as to maintain its stability robustness. Although the method guarantees good stability robustness, it is not effective in performance robustness as it does not match the singular value at low or high frequencies of the transfer matrix obtained by breaking at the plant output. This paper intends propose of a new method, using the limited behaviour of the control gain introduced by Kwakernaak and Sivan, in order to improve it does it refer to controlga introduced by kwakernaak or the new metho Anblguouls.

  • PDF

A Robust Eigenstructure Assignment Method with Application to EMRAAT Missile Control Design (견실성을 고려한 고유구조 지정기법 및 EMRAAT 미사일 제어에의 응용)

  • Kim, Joo-Ho;Park, Jae-Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.845-853
    • /
    • 2000
  • In this paper, we introduce a relationship between the sensitivity and the robustness of a system, and we propose a robust eigenstructure assignment scheme using a novel performance index which can consider the performance and the robustness of the system simultaneously. We also propose an assignment accuracy measure and a robustness measure which are used for the performance examination of the proposed robust eigenstructure assignment scheme. The usefulness of the proposed algorithm and the measures are verified by applying to controller design of a simple numerical example and the EMRAAT missile.

  • PDF

Performance and Robustness of Discrete Perturbation Observer

  • Sangjoo Kwon;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.31.5-31
    • /
    • 2001
  • In conventional perturbation estimators such as disturbance observers(DOB) [1, 2] or time-delayed controllers(TDC) [3{5}, the low pass filter(so-called Q-filter) plays an important role in the stability and performance. However, a general design guideline or analysis for the Q-filter has not been researched yet. In this paper, a guideline for the design of discrete Q-filter is suggested in terms of the analysis of the relationship between the filter parameters and stability performance robustness in discrete-time domain. The analysis clarifies the discrete-time effect of the perturbation estimator and provides a transparent relationship between performance and robustness depending ...

  • PDF

Robust Design Methodology of a Coupled System (연성 시스템의 강건설계 방법)

  • Lee, Kwon-Hee;Park, Gyung-Jin;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1763-1768
    • /
    • 2003
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. Based on the independence axiom of axiomatic design theory that illustrates the relationship between desired specifications and design parameters, the designs can be classified into three types: uncoupled, decoupled and coupled. To best approach the target performance with the maximum robustness is one of the main functional requirements of a mechanical system. Most engineering designs are pertaining to either coupled or decoupled ones, but these designs cannot currently accomplish a real robustness thus a trade-off between performance and robustness has to be made. In this research, the game theory will be applied to optimize the trade-off.

  • PDF

Optimal Network Design for Enhancing the Precision of National Geodetic Network (국가 측지망의 정밀도 향상을 위한 최적 측지망 설계에 관한 연구)

  • Cho, Jae-Myoung;Yun, Hong-Sik;Wie, Gwang-Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.587-594
    • /
    • 2010
  • This paper describe the optimal design of geodetic network by analytical technique based on the quality criteria of network. We described an example of geodetic network design taking into account the precision, reliability and robustness that are the main criteria of network design. The main goal of this paper is to evaluate the criteria to design the geodetic network coinciding with the criteria of high precision(error ellipse, 2DRMS, CEP), reliability(internal and external reliability) and robustness(maximum shear strain, principal strain, dilatation). The network design parameters computed in this study show that precision and reliability has not much improved by about 2% and 3%, respectively, than the observed network, while robustness has much improved by about 3, 100%. It also shown that maximum errors of precision, reliability and robustness were reduced by 5%, 7% and 16,957%, respectively.

Robustness Design For Tall Timber Buildings

  • Voulpiotis, Konstantinos;Frangi, Andrea
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.245-253
    • /
    • 2020
  • With the ever-increasing height of timber buildings, the complexity of timber as a structural material gives rise to behaviors not previously studied by engineers. An urgent call is needed regarding their performance in damage scenarios: activating alternative load paths in tall timber buildings is not the same as in tall buildings made with steel and concrete. In this paper we propose a robustness framework covering all building materials, whose application in timber may lead to new conceptual designs for the next generation of tall timber buildings. Qualitatively, the importance of building scale and the distinction between localized and systematic exposures are discussed, and how existing supertall structures can be an example for future generations of tall timber buildings. Quantitatively, the robustness index is introduced alongside a method to calculate the performance of a given building regarding robustness, in order to find the most cost-effective structural solutions for improved robustness. A three-level application recommendation is made, depending on the importance of the building in question. Primarily, the paper highlights the importance of conceptual design to achieve structural robustness and encourages the practicing engineering community to use the proposed framework to quantitatively come up with the new generation of tall timber buildings.