Browse > Article

Optimal Network Design for Enhancing the Precision of National Geodetic Network  

Cho, Jae-Myoung (성균관대학교 사회환경시스템공학과)
Yun, Hong-Sik (성균관대학교 사회환경시스템공학과)
Wie, Gwang-Jae (성균관대학교 사회환경시스템공학과.한진정보통신(주) GIS 기술연구소)
Publication Information
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography / v.28, no.6, 2010 , pp. 587-594 More about this Journal
Abstract
This paper describe the optimal design of geodetic network by analytical technique based on the quality criteria of network. We described an example of geodetic network design taking into account the precision, reliability and robustness that are the main criteria of network design. The main goal of this paper is to evaluate the criteria to design the geodetic network coinciding with the criteria of high precision(error ellipse, 2DRMS, CEP), reliability(internal and external reliability) and robustness(maximum shear strain, principal strain, dilatation). The network design parameters computed in this study show that precision and reliability has not much improved by about 2% and 3%, respectively, than the observed network, while robustness has much improved by about 3, 100%. It also shown that maximum errors of precision, reliability and robustness were reduced by 5%, 7% and 16,957%, respectively.
Keywords
Geodetic Network; Optimal Network Design; Precision; Reliability; Robustness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jung, I. (1924), Uber die gunstigste Gewischitsverteilung in Basisnetzen, Akdern, Abh, Uppsala.
2 Schreiber, O. (1882), Anordnung der Winkelbeobachtungen im Gottinger Basisnetz, Z. Vermessungswesen, Vol. 7, pp. 129-161.
3 윤홍식(2003), 최적화 설계 기법에 의한 차세대 국가 측지기준점 체계 구축방안 연구, 국가GIS 지원연구 2003-67, 국토해양부.
4 Ashkenazi, V., Cross, P. A. (1972), Strength analysis of block VI of the European triangulation, Bull. Geod., 103, pp. 5-24   DOI
5 Baarda, W. (1968), A Testing Procedure for use in Geodetic Networks, Publication on Geodesy, New Series, Vol. 2, No. 5, Netherland Geodetic Commission, Delft, Netherlands.
6 Bomford, G. (1980), Geodesy, 4th edition, Oxford University Press Inc., New York, pp. 719-720.
7 Choi, J. H. and H. Sato (1997), Horizontal Strain of the Crust in Korea inferred from Geodetic Data, Journal of the Geodetic Society of Japan, Vol. 43, No.3, pp. 159-180.
8 Cross, P. A. (1985), Numerical Methods in Network Design. In: Optimization and Design of Geodetic Networks, Edited by E. W. Grafarend and F. Sanso, Springer-Verlag, Berlin Heidelberg, New York, Tokyo, pp. 429-435.
9 Craymer, M. R., Wells, D. E., Vanicek, P. and Devlin, R. L. (1990), Specifications for Urban GPS Surveys, Surveying and Land Information Systems, Vol. 50, No.4, pp. 251-259.
10 Dare, P. and Vanicek, P. (1982), Strength Analysis of Horizontal Networks Using Strain, Proceedings of the Meeting of FIG Study Group 5B, Survey Control Networks, Aalborg University, Denmark, pp. 181-196.
11 Even-Tzur, G. and Papo, H. (1996), Optimization of GPS Networks by Linear Programming, Survey Review, Vol. 33, No. 262, pp. 537-545.   DOI   ScienceOn
12 Thapa, K. (1980), Strain as a Diagnostic Tool to Identify Inconsistent Observations and Constrains in Horizontal Geodetic Networks, Department of Surveying Engineering, Technical Report No:68, UNB, Fredericton, Canada.
13 Grafarend, E. (1974), Optimization of Geodetic Networks, Balletina di Geodesia Science. Affini., Vol. 33, No.4, pp. 351-406.
14 Leick, A. (2004), GPS Satellite Surveying, 3th edition, John Wiley & Sons, Inc., pp. 150-169.
15 Schmitt, G. (1985), Second Order Design. In: Optimization and Design of Geodetic Networks. Edited by E. W. Grafarend and F. Sanso, Springer-Verlag, Berlin Heidelberg, New York, Tokyo, pp. 74-120.
16 Vanicek, P. Krakiwsky, E. J., Craymer, M.R., Gao, Y. and Ong, P. (1991), Robustness Analysis, Contract Rep. 91-002, Geodetic Survey Division, Geomatics Canada, Ottawa.
17 Helmert, F. R. (1868), Studien uber rationelle Vermessungen, im Gebiete der hoheren Geodasie, Zeitschrift for Mathematik und Physik, Vol. 13, pp. 73-129.