• 제목/요약/키워드: robustness

검색결과 4,446건 처리시간 0.03초

Theoretical and experimental study of robustness based design of single-layer grid structures

  • Wu, Hui;Zhang, Cheng;Gao, Bo-Qing;Ye, Jun
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.19-33
    • /
    • 2014
  • Structural robustness refers to the ability of a structure to avoid disproportionate consequences to the original cause. Currently attentions focus on the concepts of structural robustness, and discussions on methods of robustness based structural design are rare. Firstly, taking basis in robust $H_{\infty}$ control theory, structural robustness is assessed by $H_{\infty}$ norm of the system transfer function. Then using the SIMP material model, robustness based design of grid structures is formulated as a continuum topology optimization problem, where the relative density of each element and structural robustness are considered as the design variable and the optimization objective respectively. Generalized elitist genetic algorithm is used to solve the optimization problem. As examples, robustness configurations of plane stress model and the rectangular hyperbolic shell model were obtained by robustness based structural design. Finally, two models of single-layer grid structures were designed by conventional and robustness based method respectively. Different interference scenarios were simulated by static and impact experiments, and robustness of the models were analyzed and compared. The results show that the $H_{\infty}$ structural robustness index can indicate whether the structural response is proportional to the original cause. Robustness based structural design improves structural robustness effectively, and it can provide a conceptual design in the initial stage of structural design.

A method to evaluate the risk-based robustness index in blast-influenced structures

  • Abdollahzadeh, Gholamreza;Faghihmaleki, Hadi
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.47-54
    • /
    • 2017
  • Introduction of robustness index in the structure is done in three ways: deterministic robustness index, probabilistic robustness index, and risk-based robustness index. In past decades, there have been numerous researches to evaluate robustness index in both deterministic and probabilistic ways. In this research, by using a risk analysis, a risk-based robustness index has been defined for the structure. By creating scenarios in accordance with uncertainty parameters of critical and unexpected gas blast accident, a new method has been suggested for evaluating risk-based robustness index. Finally, a numerical example for the evaluation of risk-based robustness index of a four-storey reinforced concrete moment frame, designed and built based on Eurocode 8 code, has been presented with results showing a lower risk of robustness.

New indices of structural robustness and structural fragility

  • Andre, Joao;Beale, Robert;Baptista, Antonio M.
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.1063-1093
    • /
    • 2015
  • Structural robustness has become an important design variable. However, based on the existing definitions of structural robustness it is often difficult to analyse and evaluate structural robustness, and sometimes not efficient since they mix structural robustness with several other structural variables. This paper concerns the development of a new structural robustness definition, and structural robustness and structural fragility indices. The basis for the development of the new indices is the analysis of the damage energy of structural systems for a given hazard scenario and involves a criterion to define an "unavoidable collapse" state. Illustrative examples are given detailing the steps and calculations needed to obtain values for both the structural robustness and the structural fragility indices. Finally, this paper presents the main advantages of the newly proposed definition and indices for the structural risk analysis over existing traditional methods.

섭동 시스템에 대한 규정된 원 내로의 극점배치 견실성 해석 (Robustness analysis of pole assignment in a specified circle for perturbed systems)

  • 김가규;최봉열
    • 제어로봇시스템학회논문지
    • /
    • 제1권2호
    • /
    • pp.78-82
    • /
    • 1995
  • In this paper, we consider the robustness analysis problem in state space models with linear time invariant perturbations. Based upon the discrete-time Lyapunov approach, sufficient conditions are derived for the eigenvalues of perturbed matrix to be located in a circle, and robustness bounds on perturbations are obtained. Spaecially, for the case of a diagonalizable hermitian matrix the bound is given in terms of the nominal matrix without the solution of Lyapunov equation. This robustness analysis takes account not only of stability robustness but also of certain types of performance robustness. For two perturbation classes resulting bounds are shown to be improved over the existing ones. Examples given include comparison of the proposed analysis method with existing one.

  • PDF

불확실한 선형시스템 고유값 배치의 비대칭 강인한계 (Asymmetric Robustness Bounds of Eigenvalue Distribution for Uncertain Linear Systems)

  • 이재천
    • 제어로봇시스템학회논문지
    • /
    • 제5권7호
    • /
    • pp.794-799
    • /
    • 1999
  • This study deals with robustness bounds estimation for uncertain linear systems with structured perturbations where the eigenvalues of the perturbed systems are guaranteed to stay in a prescribed region. Based upon the Lyapunov approach, new theorems to estimate allowable perturbation parameter bounds are derived. The theorems are referred to as the zero-order or first-order asymmetric robustness measure depending on the order of the P matrix in the sense of Taylor series expansion of perturbed Lyapunov equation. It is proven that Gao's theorem for the estimation of stability robustness bounds is a special case of proposed zero-order asymmetric robustness measure for eigenvalue assignment. Robustness bounds of perturbed parameters measured by the proposed techniques are asymmetric around the origin and less conservative than those of conventional methods. Numerical examples are given to illustrate proposed methods.

  • PDF

Structural robustness: A revisit

  • Andre, Joao
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.193-205
    • /
    • 2020
  • The growing need for assuring efficient and sustainable investments in civil engineering structures has determined a renovated interest in the rational design of such structures from designers, clients and authorities. As a result, risk-informed decision-making methodologies are increasingly being used as a direct decision tool or as an upper-level layer from which performance-based approaches are then calibrated against. One of the most important and challenging aspects of today's structural design is to adequately handle the system-level effects, the known unknowns and the unknown unknowns. These aspects revolve around assessing and evaluating relevant damage scenarios, namely those involving unacceptable/intolerable damage levels. Hence, the importance of risk analysis of disproportionate collapse, and along with it of robustness. However, the way robustness has been used in modern design codes varies substantially, from simple provisions of prescriptive rules to complex risk analysis of the disproportionate collapse. As a result, implementing design for robustness is still very much a grey area and more so when it comes to defining means to quantify robustness. This paper revisits the most common robustness frameworks, highlighting their merits and limitations, and identifies one among them which is very promising as a way forward to solve the still open challenges.

Robust passive damper design for building structures under uncertain structural parameter environments

  • Fujita, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제3권6호
    • /
    • pp.805-820
    • /
    • 2012
  • An enhanced and efficient methodology is proposed for evaluating the robustness of an uncertain structure with passive dampers. Although the structural performance for seismic loads is an important design criterion in earthquake-prone countries, the structural parameters such as storey stiffnesses and damping coefficients of passive dampers are uncertain due to various factors or sources, e.g. initial manufacturing errors, material deterioration, temperature dependence. The concept of robust building design under such uncertain structural-parameter environment may be one of the most challenging issues to be tackled recently. By applying the proposed method of interval analysis and robustness evaluation for predicting the response variability accurately, the robustness of a passively controlled structure can be evaluated efficiently in terms of the so-called robustness function. An application is presented of the robustness function to the design and evaluation of passive damper systems.

Proposing a Method for Robustness Index Evaluation of the Structures Based on the Risk Analysis of Main Shock and Aftershock

  • Abdollahzadeh, Gholamreza;Faghihmaleki, Hadi
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1710-1722
    • /
    • 2018
  • Investigating remained damages from terrible earthquakes, it could be concluded that some events including explosion because of defect and failure in the building mechanical facilities or caused by gas leak, firing, aftershocks, etc., which are occurred during or a few time after the earthquake, will increase the effects of damages. In this paper, by introducing a complete risk analysis which included direct and indirect risks for earthquake (the main shock) and aftershock, the corresponding robustness index was created that called as "robustness index sequential critical events risk-based". One of the main properties of the intended robustness index is using progressive collapse percentage in its evaluation. Then, in a numerical example for a 4-storey moment resisting steel frame structure, a method is presented for obtaining all effective parameters in robustness index evaluation based on the intended risk and at last its results were reported.

Supply Chain Agility: Achieving Robustness and Logistics Performance

  • Young-Kyou HA;Changjoon LEE
    • 유통과학연구
    • /
    • 제22권9호
    • /
    • pp.65-72
    • /
    • 2024
  • Purpose: This study aims to empirically analyze the influence of supply chain agility and flexibility on supply chain robustness and logistics performance, addressing a research gap in the context of dynamic business environments. Research design, data and methodology: The study examines causal relationships between supply chain agility, flexibility, robustness, and logistics performance among businesses in South Korea. Data were collected through a survey of 300 workers in supply chain-related departments. A structural equation model was employed for hypothesis testing. Results: The empirical analysis shows that supply chain agility and flexibility positively and significantly influence supply chain robustness, which in turn has a significant positive impact on logistics performance. Conclusions: This study contributes by providing empirical evidence on the importance of supply chain agility, flexibility, and robustness in enhancing logistics performance. The findings suggest prioritizing the development of these capabilities for competitive advantage. Further research on the interrelationships between various supply chain capabilities and their impact on performance outcomes is highlighted.

Measuring the Impact of Supply Network Topology on the Material Delivery Robustness in Construction Projects

  • Heo, Chan;Ahn, Changbum;Yoon, Sungboo;Jung, Minhyeok;Park, Moonseo
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.269-276
    • /
    • 2022
  • The robustness of a supply chain (i.e., the ability to cope with external and internal disruptions and disturbances) becomes more critical in ensuring the success of a construction project because the supply chain of today's construction project includes more and diverse suppliers. Previous studies indicate that topological features of the supply chain critically affect its robustness, but there is still a great challenge in characterizing and quantifying the impact of network topological features on its robustness. In this context, this study aims to identify network measures that characterize topological features of the supply chain and evaluate their impact on the robustness of the supply chain. Network centrality measures that are commonly used in assessing topological features in social network analysis are identified. Their validity in capturing the impact on the robustness of the supply chain was evaluated through an experiment using randomly generated networks and their simulations. Among those network centrality measures, the PageRank centrality and its standard deviation are found to have the strongest association with the robustness of the network, with a positive correlation coefficient of 0.6 at the node level and 0.74 at the network level. The findings in this study allows for the evaluation of the supply chain network's robustness based only on its topological design, thereby enabling practitioners to better design a robust supply chain and easily identify vulnerable links in their supply chains.

  • PDF