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Abstract: The robustness of a supply chain (i.e., the ability to cope with external and internal 

disruptions and disturbances) becomes more critical in ensuring the success of a construction 

project because the supply chain of today’s construction project includes more and diverse 

suppliers. Previous studies indicate that topological features of the supply chain critically affect 

its robustness, but there is still a great challenge in characterizing and quantifying the impact of 

network topological features on its robustness. In this context, this study aims to identify network 

measures that characterize topological features of the supply chain and evaluate their impact on 

the robustness of the supply chain. Network centrality measures that are commonly used in 

assessing topological features in social network analysis are identified. Their validity in capturing 

the impact on the robustness of the supply chain was evaluated through an experiment using 

randomly generated networks and their simulations. Among those network centrality measures,  

the PageRank centrality and its standard deviation are found to have the strongest association 

with the robustness of the network, with a positive correlation coefficient of 0.6 at the node level 

and 0.74 at the network level. The findings in this study allows for the evaluation of the supply 

chain network’s robustness based only on its topological design, thereby enabling practitioners to 

better design a robust supply chain and easily identify vulnerable links in their supply chains. 

 

Key words:  material delay, supply network management, supply network robustness, supplier 

ranking, social network analysis 

1. INTRODUCTION 

Materials typically account for 50%–60% of the total construction project cost and can influence 

up to 80% of the schedule of a project [1]. The material delivery in construction projects often 

causes schedule delay and cost overrun [2,3]. Studies have found that nearly one-fourth of the total 

project delays were due to the late delivery of materials in Kuwait [4] and that late delivery of 
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materials ranked 1st among 25 factors contributing to causes of nonexcusable project schedule 

delays in the United Kingdom [5]. 

As construction projects become larger and more material suppliers participate, multiple 

suppliers are connected in the form of a network and interact with one another. Accordingly, 

interdependencies and complexity between construction supply network entities are growing 

[6].Supply networks were traditionally viewed as systems made up of material suppliers, 

manufacturing facilities, distribution services, and customers, all linked by a linear feed forward 

flow of materials and a feedback flow of information [7,8]. However, recent studies have indicated 

that the supply chain analysis based on such assumption is not valid in today’s complex supply 

chain. Alternatively, social network analysis methods have been adopted to understand the complex 

nature of supply networks [9,10]. Social network analysis is the process of investigating social 

structures using networks and graph theory, and characterizes networked structures in terms of 

nodes (individual actors, suppliers) and the links (relationships or interactions) that connect them. 

By adopting social network analysis, Kim et al. [11] found that topological characteristics of the 

network affect its robustness, which represents the network’s ability to cope with external and 

internal disruptions and disturbances. Recent studies [12,13] also found that disruptions even in the 

smallest suppliers caused massive delays at the end due to the poor design of the network topology. 

These studies relied on the computational models/simulations in evaluating the network topology 

design and its impact on the network robustness, but the complexity of these computational models 

raises a great challenge in using them to design the network topology in practice at the early stage 

of a project. This study aims to identify network indicators that can easily characterize topological 

features of the supply chain and evaluates their impact on its robustness. We identify various 

network centrality measures that are commonly used to evaluate an importance of a vertex in social 

network analysis, and evaluate their effectiveness in predicting the robustness by simulating supply 

networks with various structures under random disruptive events. The findings of this study are 

expected to provide a relatively easy to use indicator to assess the impact of network topology on 

its robustness, thereby helping practitioners design more robust supply networks and identify and 

manage vulnerable links in their networks. 

2. BACKGROUND  

Due to the difficulties in obtaining real-life supply chain data, previous studies have relied on 

qualitative methods to acquire theoretical and practical insights to build a robust network [14]. 

While qualitative interpretations have virtues, their validity is jeopardized by a researcher’s 

constrained rationality, including the inability to understand the complicated nature of the supply 

network. In this context, many previous studies have used computational simulation models to 

design a robust supply network. Computational models enable decision makers to understand the 

impact of network structure on its robustness, identify patterns of risk diffusion, and assess 

alternative scenarios [10]. For instance, Kamal Ahmadi et al. [15] observed that it is more effective 

to source from a few reliable suppliers than from many vulnerable suppliers, while Behzadi et al. 

[16] analyzed the effectiveness of distributing supply demand in mitigating disruption in the 

agribusiness industry. Basole et al. [10] developed a computational system model to assess and 

visualize the impact of network topology on risk diffusion. Recent studies have used social network 

analysis to understand the impact of network topology on its robustness with context-specific case 

studies. Kim et al. [11] demonstrated how to use social network analysis to investigate the structural 

characteristics of supply networks via a case study in an automobile industry. However, it is yet 

unclear how and to what extent the network topology impacts the robustness of the network in the 

construction industry, and thereby, a gap exists in how to characterize and assess the topology of 

supply networks. In this context, this study focuses on identifying and validating the network 
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indicators that can reliably characterize the network topology and help predict the robustness of the 

supply network.  

3. METHODOLOGY 

In social network analysis, various centrality measures have been proposed and used to 

characterize an important vertex in the network. These centrality measures assign numbers or 

rankings to nodes corresponding to their position in the network, thereby allowing the observer to 

estimate how important a node or an edge is for the connectivity or information flow of the network. 

Thus, this study focuses on whether and which centrality measures can predict the robustness of 

the supply networks in construction. We identify several centrality measures from the social 

network analysis literature, and compute their values for randomly generated supply networks. A 

number of supply networks with different topology are created based on the data from a real-world 

project. Then the computational models to simulate these networks are developed and used to 

compute a delay of the material arrival at the network end (i.e., construction project) under random 

disruptive events on one node of the network (i.e., material delay of one supplier). Finally, the 

correlation between centrality measure values and simulated delay time at the network end is 

conducted to identify the most relevant measure. 

3.1. Network Centrality Measures 

The following network centrality measures are commonly used in the social network analysis 

[17] and are included in this study. 

The degree centrality 𝐶𝐷  of 𝑣𝑖  is the average number of adjacent edges to 𝑣𝑖 . The degree 

centrality measures how many direct, one hop connections each supplier has to other suppliers in 

the network. Degree centrality can be modified in directed networks as in-degree centrality, where 

𝑘𝑖 is the number of inbound adjacent links and out-degree centrality, where 𝑘𝑖 is the number of 

outbound adjacent links  
 

𝐶𝐷(𝑣𝑖) =
𝑘𝑖

𝑁 − 1
, 0 ≤ 𝐶𝐷 ≤ 1 

 

(1) 

The closeness centrality 𝐶𝐶𝐿 of 𝑣𝑖 is the inverse of its farness centrality (the sum of a node’s 

distances to all other nodes in the network: 𝐶𝐹(𝑣𝑖) = ∑ 𝑑(𝑣𝑖, 𝑣𝑙)𝑁
𝑙=1,𝑙≠𝑖  

 

𝐶𝐶𝐿(𝑣𝑖) =
1

𝐶𝐹(𝑣𝑖)
,

2

(𝑁 − 2)𝑁
≤ 𝐶𝐶𝐿(𝑣𝑖) ≤

1

𝑁 − 1
 

 

(2) 

The betweenness centrality 𝐶𝐵 of 𝑣𝑖 measures the number of times a node lies on the shortest 

path between other nodes in the network and is defined as follows: 
 

𝐶𝐵(𝑣𝑖) = ∑
𝑙𝑟𝑠(𝑣𝑖)

𝑙𝑟𝑠
𝑟≠𝑠≠𝑖

, 

 

(3) 

where 𝑙𝑟𝑠 = total number of shortest paths from 𝑣𝑟 to 𝑣𝑠; and 𝑙𝑟𝑠(𝑣𝑖) = number of shortest paths 

from 𝑣𝑟 to 𝑣𝑠 passing the node 𝑣𝑖. 
The PageRank centrality 𝐶𝑃𝑅  of 𝑣𝑖  is calculated by the sum of inbound nodes’ 𝐶𝑃𝑅  over the 

number of links connected to previous nodes 𝐿(𝑣) (the number of outbound links of 𝑣) [18] 
 

𝐶𝑃𝑅(𝑣𝑖) = ∑
𝐶𝑃𝑅(𝑣)

𝐿(𝑣)
𝑣∈𝑉𝑖𝑛𝑏𝑜𝑢𝑛𝑑

 

 

(4) 
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More detailed descriptions for the metric are provided in [19]. 

These centrality measures are computed for each node of a network for the node level analysis, 

which gives us insights on how important the node is in the network. To assess how the network 

topology affects the nodes and robustness of the whole network, measures for network level 

analysis were identified. The set of centrality values of all nodes in each network are collected 

separately, then mean, standard deviation, and maximum and minimum centrality are calculated 

for each network to capture the topological characteristics of the network. 

3.2. Supply Network Simulation 

1) Representation of Supply Network: The supply network was represented by a directed graph 

G = (V, E)  where V = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑁}  is the set of nodes (note that 𝑣𝑖  represents material 

suppliers), and E = {𝑒𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗), 𝑣𝑖 , 𝑣𝑗 ∈ V} is the set of edges (note that 𝑒𝑖𝑗 represents material 

transportation from supplier 𝑣𝑖 to supplier 𝑣𝑗). The adjacency matrix 𝐴𝐺 = (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑁, is a N × N 

symmetric matrix in which the element 𝑎𝑖𝑗  takes 1 or 0 depending on whether 𝑣𝑖  and 𝑣𝑗  are 

connected or not. This is a common method used in many previous studies in modeling the supply 

network [20]. 

 

2) Random Network Generation: Random supply networks were generated based on the supply 

network data from one mega plant construction project in Canada. This project’s supply network 

included suppliers for around 800,000 types of construction materials, and a lag time in each 

supplier (e.g., processing time) of this project was also used as the baseline data of randomly created 

supply networks in this project. While the total number of suppliers remains the same, the 

topological designs of supply networks were modified in a way to assign a random role (i.e., raw 

material supplier, fabrication shop, and module shop) to each supplier. The networks only included 

four different levels (i.e., tiers) of the nodes (raw material supplier, fabrication shop, module shop, 

and construction site) as they are commonly used as tier setting in supply network modeling [9]. 

Then the links between the suppliers were randomly created considering their tiers (e.g., raw 

material suppliers are only connected to fabrication shops or module shops and cannot be directly 

connected to a construction site). 

 

3) Material Flow Simulation: The material flow under a supply network was simulated using an 

agent-based model. The simulation model takes a set of supply network data consisting of node 

data (node index, capacity, tier, etc.) and link data (source node index and target node index) as an 

input. Nodes representing suppliers are generated based on the input node data. At t = 0 nodes are 

connected based on the input link data. Nodes assigned as raw material suppliers produce materials 

at each time step 𝑡𝑝 and search for the next possible target nodes to send the material. Target node 

for each material is selected randomly from the linked nodes (a set of nodes connected to the current 

node). Material is sent from the current node 𝑁𝑐  to the assigned target node 𝑁𝑡  with material 

transportation time 𝑡𝑚. Once the material is delivered to the target node, 𝑁𝑐 and 𝑁𝑡 are updated. 

The node assigned as a fabrication shop or module shop takes materials delivered from the former 

nodes and holds it for storage time 𝑡𝑠 for the storage and material fabrication. After the delay, 

material is sent to the target node 𝑁𝑡 sequentially. The node assigned as a site takes materials from 

former nodes and records the material arrival time and current storage volume. When all the 

materials arrive at the node assigned as construction site, the iteration is terminated and records the 

total time taken 𝑡𝑡.  
The storage capacity of each node is set in propotion to the number of inbound links of the node, 

considering the amount of materials the nodes have to process. During the material transportation, 

if the storage of the node is full, that node is temporarily eliminated from the linked node list and 
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the material searches for another available target. If there’s no available target at the moment, 

materials stay in the queue until at least one target node is available. 

 
4) Disruptive Event Simulation: The robustness of the network can be evaluated by its ability to 

cope with disruption in one of its nodes. As disruption in the network, a delay in a random supplier, 

was created and simulated with the increased storage time. While the storage time of a supplier was 

assumed to have a triangular distribution of 0–1–2 days, the storage time of a –disrupted supplier 

was assumed to have a triangular distribution of 3–4–5 days. 

3.3. Experimental Design 

To evaluate the relevance of the selected centrality measures, we conducted an experiment using 

supply network simulation. A total of 300 supply networks were created, and each supply network 

was simulated for 30 iterations. In each iteration, the following relative delay rate was computed: 

Relative delay rate (RDR) RDR = 𝑡𝑡_𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑒𝑑 𝑡𝑡_𝑛𝑜𝑟𝑚𝑎𝑙⁄  (total time taken for material delivery 

under disruptive event/total time taken for material delivery under nomal state). 
Then the mean and max relative delay rate were determined for each supply network. These 

representative values of the network robustness were compared with the centrality measures for 

supply networks. Specifically, correlation analysis was conducted between the centrality measures 

and the representative values for relative delay rates of networks. Analysis was done with two 

different levels (network level and node level). Centrality values of 9,000 nodes (30 nodes per 

network, total 300 networks) and 9,000 RDR values were used in node level correlation analysis. 

For the network level analysis, mean, standard deviation, and maximum and minimum centrality 

values of 300 networks and corresponding 300 mean and max RDR values were used. Pearson 

correlation coefficient was used in this study (for |𝑟| > 0.5, it is said to be a strong correlation). 
 

 

Figure 24. Illustration of the overall simulation process 

4. RESULTS AND DISCUSSION 

4.1. Network Level Results and Discussion 

Standard deviation (SD) of PageRank centrality of the network was found to have the greatest 

correlation with the robustness of the supply network (see Table 1). In addition, standard deviation 

of out-degree, mean of closeness, and mean of betweenness measures were found to have a strong 

correlation with mean, max, and max RDR, respectively, but the standard deviation of PageRank 

centrality was the only measure that shows a strong correlation with both the mean and max RDRs. 

This indicates that the variance of PageRank centrality is highly relevant to the robustness of the 

network.  
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Table 1. Correlation coefficients between centrality indicators and delay rate (network level) 

 Degree In-degree Out-degree 

 Mean SD Min Max Mean SD Min Max Mean SD Min Max 

Mean RDR 0.05 -0.44 0.05 -0.07 0.05 -0.49 0.19 -0.20 0.05 -0.56 0.40 -0.33 

Max RDR -0.38 -0.06 -0.03 0.04 -0.38 -0.15 0.20 -0.18 -0.38 -0.38 0.22 -0.19 

 Closeness Betweenness PageRank 

 Mean SD Min Max Mean SD Min Max Mean SD Min Max 

Mean RDR 0.33 -0.03 0.15 -0.32 0.34 0.01 0.14 -0.13 0.01 0.74 0.22 -0.19 

Max RDR 0.53 0.36 0.20 -0.35 0.70 0.46 0.06 -0.07 0.01 0.62 0.08 -0.06 
 

Networks with higher standard deviation of PageRank centrality tend to have more high-

centrality nodes connected to comparably low-centrality nodes, resulting in higher delay rates in 

the simulation (see Figure 2). The imbalanced centrality between adjacent nodes causes significant 

supply load on low-centrality nodes when adjacent high-degree nodes are under disruption. Thus, 

it was observed that networks with lower standard deviation of PageRank centrality (where nodes 

with equal or similar centrality are often linked) are more robust, reducing the impact of material 

delay of suppliers on the construction site. 

 

 

Figure 2. Illustrative example of supply networks (Layout: Yifan Hu [20]) 

(a) 𝐶𝑃𝑅  𝑆𝐷 = 0.050, 𝑀𝑒𝑎𝑛 𝑅𝐷𝑅 = 2.9%; and (b) 𝐶𝑃𝑅  𝑆𝐷 = 0.074, 𝑀𝑒𝑎𝑛 𝑅𝐷𝑅 = 15.1%. 

4.2. Node Level Results and Discussion 

It was found that the PageRank centrality has the greatest correlation with the network robustness 

with the positive correlation coefficient of 0.6 (see Table 2). The degree, in-degree, and closeness 

centrality measures were also found to have a strong correlation with the network robustness at the 

node level. 

Table 2. Correlation coefficients between centrality indicators and delay rate (node level) 

 Degree In-degree Out-degree Betweenness Closeness PageRank 

RDR 0.55 0.55 0.25 0.44 0.55 0.60 

 

This result indicates that a disruption on the node with a higher PageRank centrality would 

produce a higher delay rate of the entire network in the simulation. An example is visualized in 

Figure 3. The size of each node represents its PageRank value. Each node’s impact on material 

delay rate was compared to its PageRank. Nodes with a higher PageRank centrality value tend to 

receive more materials from front-end suppliers with high centrality. In other words, suppliers with 
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higher PageRank centrality have to deal with more supply load, not only affecting the adjacent 

material receivers but also the construction site at the end. Thus, the PageRank centrality of a node 

represents the relative impact of that node on the network.  

 
Figure 3. PageRank centrality and RDR comparison of an example network 

5. CONCLUSION 

This study analyzed the association of topological features of suppliers with the robustness of 

the material delivery network. Through simulations and correlation analysis, it was found that 

PageRank centrality has the greatest association with the robustness of the network in both node 

and network levels. Findings in this study will enable practitioners in construction projects to 

evaluate the robustness of supply networks in advance, based only on the network topology. Thus, 

managers will be able to adopt precautionary strategies to uncertain disturbances in material 

delivery with minimum information in the early stage of a project. However, this work considered 

materials to be homogeneous. Future study will include analysis on different characteristics of 

construction materials in terms of shipping manners and lead time. 
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