• Title/Summary/Keyword: robust regression

검색결과 365건 처리시간 0.023초

스트랩다운 적외선 영상센서를 위한 관성센서 기반 강인최소자승 움직임 훼손영상 복원 기법 (Robust Least Squares Motion Deblurring Using Inertial Sensor for Strapdown Image IR Sensors)

  • 김기승;나성웅
    • 제어로봇시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.314-320
    • /
    • 2012
  • This paper proposes a new robust motion deblurring filter using the inertial sensor measurements for strapdown image IR applications. With taking the PSF measurement error into account, the motion blurred image is modeled by the linear uncertain state space equation with the noise corrupted measurement matrix and the stochastic parameter uncertainty. This motivates us to solve the motion deblurring problem based on the recently developed robust least squares estimation theory. In order to suppress the ringing effect on the deblurred image, the robust least squares estimator is slightly modified by adoping the ridge-regression concept. Through the computer simulations using the actual IR scenes, it is demonstrated that the proposed algorithm shows superior and reliable motion deblurring performance even in the presence of time-varying motion artifact.

Robust Estimation and Outlier Detection

  • Myung Geun Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제1권1호
    • /
    • pp.33-40
    • /
    • 1994
  • The conditional expectation of a random variable in a multivariate normal random vector is a multiple linear regression on its predecessors. Using this fact, the least median of squares estimation method developed in a multiple linear regression is adapted to a multivariate data to identify influential observations. The resulting method clearly detect outliers and it avoids the masking effect.

  • PDF

Axial load prediction in double-skinned profiled steel composite walls using machine learning

  • G., Muthumari G;P. Vincent
    • Computers and Concrete
    • /
    • 제33권6호
    • /
    • pp.739-754
    • /
    • 2024
  • This study presents an innovative AI-driven approach to assess the ultimate axial load in Double-Skinned Profiled Steel sheet Composite Walls (DPSCWs). Utilizing a dataset of 80 entries, seven input parameters were employed, and various AI techniques, including Linear Regression, Polynomial Regression, Support Vector Regression, Decision Tree Regression, Decision Tree with AdaBoost Regression, Random Forest Regression, Gradient Boost Regression Tree, Elastic Net Regression, Ridge Regression, and LASSO Regression, were evaluated. Decision Tree Regression and Random Forest Regression emerged as the most accurate models. The top three performing models were integrated into a hybrid approach, excelling in accurately estimating DPSCWs' ultimate axial load. This adaptable hybrid model outperforms traditional methods, reducing errors in complex scenarios. The validated Artificial Neural Network (ANN) model showcases less than 1% error, enhancing reliability. Correlation analysis highlights robust predictions, emphasizing the importance of steel sheet thickness. The study contributes insights for predicting DPSCW strength in civil engineering, suggesting optimization and database expansion. The research advances precise load capacity estimation, empowering engineers to enhance construction safety and explore further machine learning applications in structural engineering.

진화적 기호회귀 분석기법 기반의 호우 특보 예측 알고리즘 (A Prediction Algorithm for a Heavy Rain Newsflash using the Evolutionary Symbolic Regression Technique)

  • 현병용;이용희;서기성
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.730-735
    • /
    • 2014
  • This paper introduces a GP (Genetic Programming) based robust technique for the prediction of a heavy rain newsflash. The nature of prediction for precipitation is very complex, irregular and highly fluctuating. Especially, the prediction of heavy precipitation is very difficult. Because not only it depends on various elements, such as location, season, time and geographical features, but also the case data is rare. In order to provide a robust model for precipitation prediction, a nonlinear and symbolic regression method using GP is suggested. The remaining part of the study is to evaluate the performance of prediction for a heavy rain newsflash using a GP based nonlinear regression technique in Korean regions. Analysis of the feature selection is executed and various fitness functions are proposed to improve performances. The KLAPS data of 2006-2010 is used for training and the data of 2011 is adopted for verification.

선형보간법에 의한 자료 희소성 해결방안의 문제와 대안 (Robust Interpolation Method for Adapting to Sparse Design in Nonparametric Regression)

  • 박동련
    • 응용통계연구
    • /
    • 제20권3호
    • /
    • pp.561-571
    • /
    • 2007
  • 국소선형회귀모형의 추정량은 좋은 특성을 가지고 있는 추정량으로서 가장 흔히 사용되는 비모수적 회귀모형의 추정량이라고 하겠다. 이러한 국소선형 추정량이 자료가 희박한 구간에서는 심하게 왜곡된 추정결과를 보이는 문제가 있으며, Hall과 Turlach(1997)이 제안한 선형보간법이 이러한 문제에 대한 매우 효과적인 해결방안이라는 것은 잘 알려진 사실이다. 그러나 Hall과 Turlach가 제안한 선형보간법이 이상값에 매우 취약하다는 사실은 아직 지적된 적이 없는 문제이다. 이 논문에서는 이상값의 영향력을 감소시킬 수 있는 수정된 선형보간법에 의한 유사자료의 생성방법을 제안하고, 그 특성을 모의실험을 통하여 기존의 방법과 비교하였다.

Patch based Semi-supervised Linear Regression for Face Recognition

  • Ding, Yuhua;Liu, Fan;Rui, Ting;Tang, Zhenmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권8호
    • /
    • pp.3962-3980
    • /
    • 2019
  • To deal with single sample face recognition, this paper presents a patch based semi-supervised linear regression (PSLR) algorithm, which draws facial variation information from unlabeled samples. Each facial image is divided into overlapped patches, and a regression model with mapping matrix will be constructed on each patch. Then, we adjust these matrices by mapping unlabeled patches to $[1,1,{\cdots},1]^T$. The solutions of all the mapping matrices are integrated into an overall objective function, which uses ${\ell}_{2,1}$-norm minimization constraints to improve discrimination ability of mapping matrices and reduce the impact of noise. After mapping matrices are computed, we adopt majority-voting strategy to classify the probe samples. To further learn the discrimination information between probe samples and obtain more robust mapping matrices, we also propose a multistage PSLR (MPSLR) algorithm, which iteratively updates the training dataset by adding those reliably labeled probe samples into it. The effectiveness of our approaches is evaluated using three public facial databases. Experimental results prove that our approaches are robust to illumination, expression and occlusion.

Country-Level Institutional Quality and Public Debt: Empirical Evidence from Pakistan

  • MEHMOOD, Waqas;MOHD-RASHID, Rasidah;AMAN-ULLAH, Attia;ZI ONG, Chui
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권4호
    • /
    • pp.21-32
    • /
    • 2021
  • This paper aims to investigate the relationship between country-level institutional quality and public debt in the context of Pakistan. The hypotheses of this study were assessed by using the country-level institutional quality data for Pakistan throughout the years from 1996 to 2018. Data came from the World Databank, IMF and Worldwide Governance Indicators databases. For the analysis, ordinary least square, quantile regression and robust regression were employed to assess the factors influencing the public debt. The results of this study indicate that the factors of voice and accountability, regulatory quality, and control of corruption have a positive and significant relationship with public debt, while political stability, government effectiveness, and the rule of law have a negative and significant effect on public debt. Based on the findings, a weak country-level institutional quality poses a substantial market risk as it signals the existence of an unfavorable economic condition that raises public debt. It was also revealed that an improved performance of country-level institutional quality can lead to the improvement of financial market transparency, hence reduce public debt. In contrast to previous studies, the present study will be breaking ground in enhancing public insight regarding the impact of country-level institutional quality on Pakistan's public debt.

부산지역 오피스텔 가격 결정요인 분석 (A Study on the Factors Determining Officetel Price in Busan)

  • 최열;김형준;여정훈
    • 대한토목학회논문집
    • /
    • 제35권3호
    • /
    • pp.725-735
    • /
    • 2015
  • 본 연구는 부산지역 오피스텔의 가격을 결정하는데 있어서 영향을 주는 요인들이 어떤 것들이 있는지에 대해 실증적 분석을 하여 오피스텔 시장을 구체적으로 이해하는데 목적이 있다. 시세가를 통해 오피스텔 가격 결정요인을 분석하는 것은 오피스텔 공급자로 하여금 적절한 규모와 입지선택에 도움을 줄 수 있고, 수요자들에게는 목적에 따른 오피스텔 선택에 도움이 되리라 판단하여 본 연구를 실시하였다. 부산지역 오피스텔의 실거래가를 종속변수로 하고 물리적 특성과 입지적 특성, 그리고 지역적 특성을 나타내는 요인들을 독립변수로 하여 OLS선형회귀분석(Ordinary Least Square)과 준로그모형분석(Semi-log model), 그리고 로버스트회귀분석(Robust regression)을 이용하여 오피스텔의 가격결정요인을 분석하였다.

Prediction of squeezing phenomenon in tunneling projects: Application of Gaussian process regression

  • Mirzaeiabdolyousefi, Majid;Mahmoodzadeh, Arsalan;Ibrahim, Hawkar Hashim;Rashidi, Shima;Majeed, Mohammed Kamal;Mohammed, Adil Hussein
    • Geomechanics and Engineering
    • /
    • 제30권1호
    • /
    • pp.11-26
    • /
    • 2022
  • One of the most important issues in tunneling, is the squeezing phenomenon. Squeezing can occur during excavation or after the construction of tunnels, which in both cases could lead to significant damages. Therefore, it is important to predict the squeezing and consider it in the early design stage of tunnel construction. Different empirical, semi-empirical and theoretical-analytical methods have been presented to determine the squeezing. Therefore, it is necessary to examine the ability of each of these methods and identify the best method among them. In this study, squeezing in a part of the Alborz service tunnel in Iran was estimated through a number of empirical, semi- empirical and theoretical-analytical methods. Among these methods, the most robust model was used to obtain a database including 300 data for training and 33 data for testing in order to develop a machine learning (ML) method. To this end, three ML models of Gaussian process regression (GPR), artificial neural network (ANN) and support vector regression (SVR) were trained and tested to propose a robust model to predict the squeezing phenomenon. A comparative analysis between the conventional and the ML methods utilized in this study showed that, the GPR model is the most robust model in the prediction of squeezing phenomenon. The sensitivity analysis of the input parameters using the mutual information test (MIT) method showed that, the most sensitive parameter on the squeezing phenomenon is the tangential strain (ε_θ^α) parameter with a sensitivity score of 2.18. Finally, the GPR model was recommended to predict the squeezing phenomenon in tunneling projects. This work's significance is that it can provide a good estimation of the squeezing phenomenon in tunneling projects, based on which geotechnical engineers can take the necessary actions to deal with it in the pre-construction designs.

뎁스를 이용한 생존회귀모형들의 비교연구 (A Comparison Study of Survival Regression Models Based on Data Depths)

  • 김지연;황진수
    • 응용통계연구
    • /
    • 제20권2호
    • /
    • pp.313-322
    • /
    • 2007
  • 오염이 있는 생존자료에서 여러 가지 회귀뎁스(regression depth)를 비교 연구하였다. 중도절단 자료에서 회귀뎁스에 대한 정의는 Park과 Hwang(2003)의 반공간회귀뎁스(halfspace regression depth)와 Park(2003)의 심플리셜 회귀뎁스(simplicial regression depth)가 있다. 본 논문은 Hubert 등(2001)이 제안한 사영회귀뎁스(projection regression depth)를 생존자료에서 사용하는 방법을 제시하고 이 방법과 기존의 뎁스기반 회귀모형과의 비교를 다양한 오염 상황에서 실시하였다.