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Robust Estimation and Qutlier Detectionl)
Myung Geun Kim?2
Abstract

The conditional expectation of a random variable in a multivariate normal
random vector is a multiple linear regression on its predecessors. Using this fact,
the least median of squares estimation method developed in a multiple linear
regression is adapted to a multivariate data to identify influential observations.
The resulting method clearly detect outliers and it avoids the masking effect.

1. Introduction

In a multivariate data, the sample mean vector and the sample covariance matrix are
very sensitive to outliers, and the latter is more sensitive than the former. This means
that any analysis based on them can be exposed to outliers. For example, the well-known
Wilks’ statistic (1963) based on the usual Mahalanobis distance for detecting outliers
suffers from the masking effect caused by insufficient detection of closely located outliers
so that multiple outliers do not necessarily have a large distance. The masking
phenomenon is that less extreme outliers mask the effect of the most extreme
observations under investigation as outliers.

One way to remedy the masking effect is to use robust estimators. Substituting robust
estimators for the maximum likelihood estimators in computing the Mahalanobis distance
may mitigate such a masking effect. A global measure of robustness is the breakdown
point whose finite-sample version is defined as the minimum fraction of outliers that will
spoil the estimator completely (Rousseeuw and Leroy, 1987, p.10).

Campbell (1980) proposed to replace the maximum likelihood estimators for mean vector
and covariance matrix by the respective M estimator to compute robust Mahalanobis
distance and applied the result to outlier detection and principal component analysis.

But the breakdown point of M estimators is at most 1/(p+1) (Rousseeuw and Leroy, 1987,
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p.253), where p is the number of variables in a random vector. As the number of
variables increases, the breakdown point goes down to zero. Thus the development of
outlier detection based on estimators with high breakdown points is necessary. Rousseeuw
and van Zomeren (1990) introduced the minimum volume ellipsoid method for obtaining
highly robust estimators and applied it to outlier detection. For mean vector the center of
the minimum volume ellipsoid covering half of the observations is taken, and the
minimum volume ellipsoid multiplied by a correction factor is taken as an estimator for
covariance matrix. The breakdown point of the minimum volume ellipsoid estimator is
nearly 50%. The minimum volume ellipsoid estimators are obtained using the resampling
algorithm (Rousseeuw and van Zomeren, 1990, p.638) by drawing subsamples of size p+1,
and sometimes the covariance matrices for some subsamples are nearly singular. Both
methods mentioned above lack of a formal test for outliers because the distributions of
the corresponding statistics are not available,

The least median of squares method has been introduced by Rousseeuw (1984) for
detecting multiple outliers in the context of regression analysis. The least median of
squares estimator for the regression parameter is found by minimizing the median of
squares of the residuals and its breakdown point is 50%(Rousseeuw and Leroy, 1987,
p.118). The least median of squares method is powerful in detecting multiple outliers
and avoids the masking effect (see Rousseeuw and Leroy, 1987, Chap. 3).

It is well known that the conditional expectation of a variable in a multivariate normal
vector is a multiple linear regression on its given predecessors (Johnson and Wichern,
1992, p.332). In this work the least median of squares method is adapted to a multivariate
normal data to screen out possible outliers and the remaining data will be used for
getting robust estimators for mean vector and covariance matrix. The resulting procedure
applied to outlier detection is very effective in avoiding the masking effect. Numerical
examples are given for illustration.

2. A procedure for detecting outliers

Let X, = (Xy,,X,) (r = 1,-+,1n) be a random sample from a p-variate normal

distribution with mean vector xz = (u 1, U p)Tand positive-definite covariance

matrix ¥. We will not notationally discriminate between random vector and its realization
because it will be clear from the context.
Some statistics for detecting outliers are based on the following Wilks’ statistics (1963)
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{(xi=m) T W Hx;-m) }\? (1)

computed for each observation (for example, Bacon-Shone and Fung, 1987, Caroni and
Prescott, 1990), where m is the sample mean vector and W is the sample covariance
matrix. The statistic (1) can be derived as the likelihood ratio statistic for the mean
slippage model. Observations having large Mahalanobis distance are regarded as outliers.
This procedure performs well if only a single outlier is present, but otherwise suffers
from the masking effect (for more details, refer to Barnett and Lewis, 1984, Chap. 9).

The conditional expectation of a variable in a multibariate normal vector is a multiple
linear regression on its given predecessors. Thus the multiple linear regression of the ith
random variable on its given predecessors for each i = 1,...p can be expressed as

Xi= Bo+BuXip+t+Bii1Xi-1,+ €4, (2)
where the error terms € ( r = 1,.,n ) are independent and identically distributed as a
normal distribution with mean zero and variance V 12 When [ = 1, the regression model

(2) is understood as a location case. The regression parameters in (2) can be expressed in

terms of the 4 ; and the inverse Cholesky root of X. We will briefly derive them for

easy reference. Let A = (ay) be a lower triangular matrix with positive diagonal

elements such that £ = AA". Let BT = A™!. Then B is an
upper triangular matrix with positive diagonal elements and its (j,i)th element will be

denoted by bji. The Cholesky root A and the inverse Cholesky root B are uniquely
determined. Let z () be the { by 1 vector formed by the first i elements of a column
vector z. We denote by Q (i) the leading principal submatrix having order i of a square
matrix Q. Then the marginal distribution of X (5 is a multivariate normal with mean
vector 4 () and covariance matrix X (). The conditional expectation of X ; given
Xy, o, X1 is
Li* 0 X U-0(X oy = £ G-n),

where 0 ;21 is a row vector of size /-1 consisting of the first i~1 elements in the last
row of X (5 and its residual variance is given by

-1
Oi— 012 G-1)0 i
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where 0 ;; is the ith diagonal element of ¥ and Ci12= 0O :T21. By partitioning X (i
into X -1y and the others in an obvious way, and wusing the identities

T T - . .
Y= AunAi-y and B-n= A 1), we easily get the vector of regression

coefficients as

CinZd-n = —aa(by, b
Since GinXunCin= % i @% , the residual variance becomes b 2. Hence we
have
Bo= i+ Yih(bu/bduy Ba=-buw/bs (ALk<Li-1) (3)

and v? = bj The identities (3) can be found in Hawkins and Eplett (1982).

For each ordering of the variables in a random vector, we have p regressions. For each
i, the least squares estimators for the regression coefficients and the residual variance are

the same as those in (3) with the z; and b replaced by the counterparts of the

sample mean vector and the sample covariance matrix with its divisor equal to the sample
size (Johnson and Wichern, 1992, pp.338-340). Thus the identities (3) show that the mean
vector and the covariance matrix can be estimated by successively fitting a multivariate

normal data to the regression model (2) from i=1 to p. At each step #: and the ith

column of B are determined. This process of estimation is adopted only for screening out
possible outliers and based on the remaining data we will determine whether or not
observations screened out are outliers. Observations not classified as outliers can then be
used for robust estimation.

Our procedure for detecting outliers is as follows:

1. The least median of squares method is applied to all the regressions for each

ordering of the variables and select good observations.

2. Based on the selected observations find the maximum likelihood estimators for

and X.

3. Classify the observations not selected in Step 1 as outliers or not according to

the corresponding Mahalanobis distance obtained by replacing m and W by the
maximum likelihood estimators in Step 2

Let r be the number of observations selected in Step 1 and X o be an observation not

selected. Then Xo - m is distributed as a p-variate normal with mean zero and
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covariance matrix [(r+1)/r]¥ and it is independent of W. Since rW is distributed
according to a Wishart distribution with scale matrix ¥ and degrees of freedom r-1,
r—- _ Ty -1 _
o+ 1) (Xo- m) W (xo~- m)
has a F-distribution with degrees of freedom p and r-p (Seber, 1984, p.30). Thus
observations with sufficiently small p-value are regarded as outliers.

3. Examples

Two data sets are given for illustration. Two cases in which m and W are the usual
sample mean vector and the sample covariance matrix (MD) and the estimators described
in Step 2 (RD) are considered and compared. The utility function Imsreg in Splus (1990)
is used to compute the 1.LMS estimates for the regression parameters. A Fortran program
named PROGRESS is also available in the library statlib at Carnegie-Mellon University.

Table 1 shows the Mahalanobis distances for the cost data measured on three
variables (Johnson and Wichern, 1992, p.217). Bacon-Shone and Fung (1987) and Caroni
and Prescott (1992) analyzed the cost data based on the usual Mahalanobis distance.
They concluded that observations 9 and 21 are highly significant. After applying the
procedure in Section 2, eight observations are not selected at Step 1 and they are listed in
Table 2. Taking a look at the p-values for the eight observations, observation 9 is highly
significant and 21 is the next. Observations 36 and 20 are a little significant. The others
do not seem to be significant.

Hawkins, Bradu and Kass (1984) constructed a data set to illustrate the masking effect
in the context of regression analysis. Rousseeuw and van Zomeren (1990) analyzed the
data set only for three independent variables using a robust version of
the Mahalanobis distance. Their conclusion is that observations 1 to 14 are outliers.

Our analysis is also confined to the data for three independent variables. Two types of
distances are included in Table 3. The usual Mahalanobis diatances do not reveal the
outliers well. Observations 12 and 14 masks the others. The first step in our procedure
removes the first 14 observations. The resulting Mahalanobis distances

identify the outliers very well. The p-values for the removed observations are nearly zero
and therefore the first 14 observations are highly significant.
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Table 1. Mahalanobis distances for Cost Data

No | MD RD | No| MD | RD No | MD | RD
1 (1.10 | 1.95| 13| 0.84 | 0.87 | 25 | 2.45 | 3.16
211.8 (198 | 14 | 0.63 | 0.66 | 26 | 1.53 | 1.65
3(1.86 | 1.84 | 15| 2.08 | 2.78 | 27 | 1.92 | 2.57
411.8 {37916 | 1.54 | 1.59| 28| 1.18 | 1.81
51098 |0.92|17 | 1.03|1.43 | 29 | 1.57 | 1.52
6 | 1.17 | 1,93 || 18 | 1.77 | 2.16 | 30 | 1.34 | 2.07
71072097 (1906406731 |1.76]| 2.54
8 1.81 | 2.16 || 20 | 2.56 | 4.13 || 32 | 1.58 | 2.63
9 |4.26| 100 | 21 | 332|595 33| 1.15 | 1.64
10 | 0.34 | 0.50 || 22 | 0.71 | 1.32 | 34 | 1.06 | 1.94
11 {1.03 | 1.94 | 23 2.29 | 2.60 | 35 | 1.46 | 1.58
12 { 1.13 | 1.05 | 24 | 1.39 | 1.58 || 36 | 2.10 | 4.50
Table 2. P-values for Cost Data
No 4 9 20 21
p-value 1.66x10™ 2.52x10° | 8.17 x10™ 1.45x10™
No 25 27 32 36
p-value 5.62x107 1.55x107 1.42x107" 3.72x107°




Table 3. Mahalanobis distances for the Hawkins-Bradu-Kass data
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No MD RD No MD RD No MD RD
11193 |29.69 |26 1.18 | 1.72 | 51 | 1.31 | 1.53
2 11.87 | 30.46 || 27 | 1.46 | 2.01 || 52 | 2.09 | 2.11
3123313216} 28 | 0.87 | 1.04 | 53| 2.23 | 2.54
4| 2.24 (33,13 29 | 0.58 | 1.15 || 54 | 1.42 | 1.92
51211 | 32.55 30| 1.58 | 2,13 )1 65 | 1.24 | 1.39
6| 2.16 | 30.84 | 31 { 1.85 | 1,73 | 56 | 1.34 | 1.66
71202 |30.94 |32 |1.321.78 | 57| 0.84 | 1.37
8 [1.93 30,0533 (099 | 1.29 | 58 | 1.41 | 1.76
9| 2.24 13222 } 34 | 1.18 | 2.06 | 59 | 0.60 | 1.29

10 | 2.35 | 31.20 || 35 | 1.25 [ 1.90 j 60 | 1.90 | 2.11

11 | 2.46 | 36.94 | 36 | 0.86 | 1.15 | 61 | 1.69 | 2.26

12 | 3.13 | 38.27 || 37 | 1.84 | 2.03 | 62 | 0.76 | 2.00

13 | 2.68 | 37.22 | 38 | 0.76 | 1.50 || 63 | 1.30 | 1.82

14 | 6.42 | 41.43 | 39 | 1.27 | 1.81 || 64 | 0.98 | 1.87

15 | 1.83 2.02 } 40 | 1.12 | 1.09 | 65 | 1.16 | 1.56

16 | 2.17 2.18 || 41 | 1.71 | 2.06 || 66 | 1.31 | 1.47

17 | 1.39 1.95 ) 42 | 1.78 | 1.81 || 67 | 0.63 | 0.55

18 | 0.85 0.79 | 43 | 1.88 | 2,18 | 68 | 1.56 | 2.12

19 | 1.16 1.30 | 44 | 1.43 | 2.04 | 69 | 1.08 | 1.76

20 | 1.60 2.08 | 45 (1.08 | 1.87 | 70 { 1.00 | 1.37

21 | 1.10 1.07 || 46 { 1.35 } 1.89 | 71 | 0.65 | 1.01

22 | 1.56 1.76 | 47 { 1.98 | 2.30 | 72 | 1.06 | 0.93

23 | 1.09 1.17 || 48 | 1.43 | 1.90 | 73 | 1.48 | 1.33

24 | 0.98 1.33 | 49 | 1.58 | 1.60 | 74 | 1.66 | 1.53

25 1 0.80 2.00 | 50 | 0.43 | 1.49 || 75| 1.91 | 2.08

39
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