• Title/Summary/Keyword: robust computation

Search Result 270, Processing Time 0.031 seconds

PC Cluster based Parallel Adaptive Evolutionary Algorithm for Service Restoration of Distribution Systems

  • Mun, Kyeong-Jun;Lee, Hwa-Seok;Park, June-Ho;Kim, Hyung-Su;Hwang, Gi-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.435-447
    • /
    • 2006
  • This paper presents an application of the parallel Adaptive Evolutionary Algorithm (AEA) to search an optimal solution of the service restoration in electric power distribution systems, which is a discrete optimization problem. The main objective of service restoration is, when a fault or overload occurs, to restore as much load as possible by transferring the de-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints. This problem has many constraints and it is very difficult to find the optimal solution because of its numerous local minima. In this investigation, a parallel AEA was developed for the service restoration of the distribution systems. In parallel AEA, a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner are used in order to combine the merits of two different evolutionary algorithms: the global search capability of the GA and the local search capability of the ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. After AEA operations, the best solutions of AEA processors are transferred to the neighboring processors. For parallel computing, a PC cluster system consisting of 8 PCs was developed. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based fast Ethernet. To show the validity of the proposed method, the developed algorithm has been tested with a practical distribution system in Korea. From the simulation results, the proposed method found the optimal service restoration strategy. The obtained results were the same as that of the explicit exhaustive search method. Also, it is found that the proposed algorithm is efficient and robust for service restoration of distribution systems in terms of solution quality, speedup, efficiency, and computation time.

The Method of New Robust Inverse Filter Design in 2-Ch Audio System (2채널 오디오 시스템에서 전달계 변동에 강인한 역필터 설계 기법)

  • Park, Byoung-Uk;Kim, Hack-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.185-192
    • /
    • 2008
  • The crosstalk is the most serious problem in playing audio signals with more than two speakers. Usually an inverse filter is employed to remove such a Phenomenon. The LNS method, one of most effective design techniques for an inverse filter, has some advantages such as easy implementation and quick computation. However, the inverse filter designed by the LNS method is not easy to adapt immediately for the delivery system change since the pre-measured impulse response is used to design the filter. In this work, we present an adaptive algorithm for the inverse filter design. With the present algorithm. the inverse filter is initially designed by the LNS methods and continuously adjusted to cope with the delivery system changes. To verify the proposed method. some simulations were carried out and the results confirmed that the performance of the crosstalk calculation can be improved in entire frequency range.

  • PDF

Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.116-124
    • /
    • 2005
  • This paper presents an application of the parallel Genetic Algorithm-Tabu Search (GA- TS) algorithm, and that is to search for an optimal solution of a reconfiguration in distribution systems. The aim of the reconfiguration of distribution systems is to determine the appropriate switch position to be opened for loss minimization in radial distribution systems, which is a discrete optimization problem. This problem has many constraints and it is very difficult to solve the optimal switch position because of its numerous local minima. This paper develops a parallel GA- TS algorithm for the reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10$\%$ of the population to enhance the local searching capabilities. With migration operation, the best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based rapid Ethernet. To demonstrate the usefulness of the proposed method, the developed algorithm was tested and is compared to a distribution system in the reference paper From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution quality, speedup, efficiency, and computation time.

Real-Time Feature Point Matching Using Local Descriptor Derived by Zernike Moments (저니키 모멘트 기반 지역 서술자를 이용한 실시간 특징점 정합)

  • Hwang, Sun-Kyoo;Kim, Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.116-123
    • /
    • 2009
  • Feature point matching, which is finding the corresponding points from two images with different viewpoint, has been used in various vision-based applications and the demand for the real-time operation of the matching is increasing these days. This paper presents a real-time feature point matching method by using a local descriptor derived by Zernike moments. From an input image, we find a set of feature points by using an existing fast corner detection algorithm and compute a local descriptor derived by Zernike moments at each feature point. The local descriptor based on Zernike moments represents the properties of the image patch around the feature points efficiently and is robust to rotation and illumination changes. In order to speed up the computation of Zernike moments, we compute the Zernike basis functions with fixed size in advance and store them in lookup tables. The initial matching results are acquired by an Approximate Nearest Neighbor (ANN) method and false matchings are eliminated by a RANSAC algorithm. In the experiments we confirmed that the proposed method matches the feature points in images with various transformations in real-time and outperforms existing methods.

Combined Active Contour Model and Motion Estimation for Real-Time Object Tracking (능동윤곽모델과 움직임 추정을 결합한 실시간 객체 추적 기술)

  • Kim, Dae-Hee;Lee, Dong-Eun;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.64-72
    • /
    • 2007
  • In this paper we proposed a combined active contour model and motion estimation-based object tracking technique. After assigning the initial contour, we find the object's boundary and update the initial contour by using object's motion information. In the following frames, similar snake algorithm is repeated to make continuously estimated object's region. The snake algerian plays a role in separating the object from background, while motion estimation provides object's moving direction and displacement. The proposed algorithm provides equivalently stable, robust, tracking performance with significantly reduced amount of computation, compared with the existing shape model-based algorithms.

A Real-time Particle Filtering Framework for Robust Camera Tracking in An AR Environment (증강현실 환경에서의 강건한 카메라 추적을 위한 실시간 입자 필터링 기법)

  • Lee, Seok-Han
    • Journal of Digital Contents Society
    • /
    • v.11 no.4
    • /
    • pp.597-606
    • /
    • 2010
  • This paper describes a real-time camera tracking framework specifically designed to track a monocular camera in an AR workspace. Typically, the Kalman filter is often employed for the camera tracking. In general, however, tracking performances of conventional methods are seriously affected by unpredictable situations such as ambiguity in feature detection, occlusion of features and rapid camera shake. In this paper, a recursive Bayesian sampling framework which is also known as the particle filter is adopted for the camera pose estimation. In our system, the camera state is estimated on the basis of the Gaussian distribution without employing additional uncertainty model and sample weight computation. In addition, the camera state is directly computed based on new sample particles which are distributed according to the true posterior of system state. In order to verify the proposed system, we conduct several experiments for unstable situations in the desktop AR environments.

Real Time Face Detection and Recognition using Rectangular Feature Based Classifier and PCA-based MLNN (사각형 특징 기반 분류기와 PCA기반 MLNN을 이용한 실시간 얼굴검출 및 인식)

  • Kim, Jong-Min;Lee, Kee-Jun
    • Journal of Digital Contents Society
    • /
    • v.11 no.4
    • /
    • pp.417-424
    • /
    • 2010
  • In this paper the real-time face region was detected by suggesting the rectangular feature-based classifier and the robust detection algorithm that satisfied the efficiency of computation and detection performance was suggested. By using the detected face region as a recognition input image, in this paper the face recognition method combined with PCA and the multi-layer network which is one of the intelligent classification was suggested and its performance was evaluated. As a pre-processing algorithm of input face image, this method computes the eigenface through PCA and expresses the training images with it as a fundamental vector. Each image takes the set of weights for the fundamental vector as a feature vector and it reduces the dimension of image at the same time, and then the face recognition is performed by inputting the multi-layer neural network.

ECG-based Biometric Authentication Using Random Forest (랜덤 포레스트를 이용한 심전도 기반 생체 인증)

  • Kim, JeongKyun;Lee, Kang Bok;Hong, Sang Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.100-105
    • /
    • 2017
  • This work presents an ECG biometric recognition system for the purpose of biometric authentication. ECG biometric approaches are divided into two major categories, fiducial-based and non-fiducial-based methods. This paper proposes a new non-fiducial framework using discrete cosine transform and a Random Forest classifier. When using DCT, most of the signal information tends to be concentrated in a few low-frequency components. In order to apply feature vector of Random Forest, DCT feature vectors of ECG heartbeats are constructed by using the first 40 DCT coefficients. RF is based on the computation of a large number of decision trees. It is relatively fast, robust and inherently suitable for multi-class problems. Furthermore, it trade-off threshold between admission and rejection of ID inside RF classifier. As a result, proposed method offers 99.9% recognition rates when tested on MIT-BIH NSRDB.

Two-Stage Neural Networks for Sign Language Pattern Recognition (수화 패턴 인식을 위한 2단계 신경망 모델)

  • Kim, Ho-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we present a sign language recognition model which does not use any wearable devices for object tracking. The system design issues and implementation issues such as data representation, feature extraction and pattern classification methods are discussed. The proposed data representation method for sign language patterns is robust for spatio-temporal variances of feature points. We present a feature extraction technique which can improve the computation speed by reducing the amount of feature data. A neural network model which is capable of incremental learning is described and the behaviors and learning algorithm of the model are introduced. We have defined a measure which reflects the relevance between the feature values and the pattern classes. The measure makes it possible to select more effective features without any degradation of performance. Through the experiments using six types of sign language patterns, the proposed model is evaluated empirically.

Distribution System Reconfiguration Using the PC Cluster based Parallel Adaptive Evolutionary Algorithm

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June Ho;Hwang Gi-Hyun;Yoon Yoo-Soo
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.269-279
    • /
    • 2005
  • This paper presents an application of the parallel Adaptive Evolutionary Algorithm (AEA) to search an optimal solution of a reconfiguration in distribution systems. The aim of the reconfiguration is to determine the appropriate switch position to be opened for loss minimization in radial distribution systems, which is a discrete optimization problem. This problem has many constraints and it is very difficult to find the optimal switch position because of its numerous local minima. In this investigation, a parallel AEA was developed for the reconfiguration of the distribution system. In parallel AEA, a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner are used in order to combine the merits of two different evolutionary algorithms: the global search capability of GA and the local search capability of ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. After AEA operations, the best solutions of AEA processors are transferred to the neighboring processors. For parallel computing, a PC-cluster system consisting of 8 PCs·was developed. Each PC employs the 2 GHz Pentium IV CPU, and is connected with others through switch based fast Ethernet. The new developed algorithm has been tested and is compared to distribution systems in the reference paper to verify the usefulness of the proposed method. From the simulation results, it is found that the proposed algorithm is efficient and robust for distribution system reconfiguration in terms of the solution quality, speedup, efficiency, and computation time.