• Title/Summary/Keyword: robust and neural control

Search Result 220, Processing Time 0.026 seconds

Robust Recurrent Wavelet Interval Type-2 Fuzzy-Neural-Network Control for DSP-Based PMSM Servo Drive Systems

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.139-160
    • /
    • 2013
  • In this paper, an intelligent robust control system (IRCS) for precision tracking control of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The IRCS comprises a recurrent wavelet-based interval type-2 fuzzy-neural-network controller (RWIT2FNNC), an RWIT2FNN estimator (RWIT2FNNE) and a compensated controller. The RWIT2FNNC combines the merits of a self-constructing interval type-2 fuzzy logic system, a recurrent neural network and a wavelet neural network. Moreover, it performs the structure and parameter-learning concurrently. The RWIT2FNNC is used as the main tracking controller to mimic the ideal control law (ICL) while the RWIT2FNNE is developed to approximate an unknown dynamic function including the lumped parameter uncertainty. Furthermore, the compensated controller is designed to achieve $L_2$ tracking performance with a desired attenuation level and to deal with uncertainties including approximation errors, optimal parameter vectors and higher order terms in the Taylor series. Moreover, the adaptive learning algorithms for the compensated controller and the RWIT2FNNE are derived by using the Lyapunov stability theorem to train the parameters of the RWIT2FNNE online. A computer simulation and an experimental system are developed to validate the effectiveness of the proposed IRCS. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulation and experimental results confirm that the IRCS grants robust performance and precise response regardless of load disturbances and PMSM parameters uncertainties.

A Navigation Control Algorithm for Automated Guided Vehicle Based on Neural Network Sensing Prediction (신경망 예측에 기반한 AGV의 주행 알고리듬)

  • 나용균;김선효;오세영;성학경;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.428-428
    • /
    • 2000
  • A robust intelligent algorithm for AGV navigation control is presented here based on both magnetic and gyro sensors to track a reference trajectory. Since the proposed system uses an intermittent array of short magnetic tape strips, it lends itself to a very easy installation and maintenance compared to other types of positioning references such as electric wire, magnets, RF and laser beacons. The neural network is to predict the lateral deviation of the AGV in the intervals where no magnetic tape references are available. Further, the use of intelligent control ensures a robust and flexible control performance. Computer simulation of AGV control demonstrates its adequate tracking performances even where the sensor information is not available. Real experiments using Samsung AGV are also on the way for real verification

  • PDF

A Performance Improvement for Tracking Controller of a Mobile Robot Using Neural Networks (신경망을 이용한 이동로봇 궤적제어기 성능개선)

  • Park Jae-Hwae;Lee Man-Hyung;Lee JangMyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1249-1255
    • /
    • 2004
  • A new parameter adaptation scheme for RBF Neural Network (NN) has been developed in this paper. Even though the RBF Neural Network (NN) based controllers are robust against both un-modeled dynamics and external disturbances, the performance is not satisfactory for a fast and precise mobile robot. To improve the tracking performance as well as robustness, all the parameters of RBF NN are updated in real time. The stability of this control law is rigorously proved by following the Lyapunov stability theory and shown by the experimental simulations. The fact that all of the weighting factors, width and center of RBF NN have been updated implies that this scheme utilizes all the possibilities in RBF NN to make the controller robust and precise while the mobile robot is following un-known trajectories. The performance of this new algorithm has been compared to the conventional RBF NN controller where some of the parameters are adjusted for robustness.

Robot Trajectory Control using Prefilter Type Chaotic Neural Networks Compensator (Prefilter 형태의 카오틱 신경망을 이용한 로봇 경로 제어)

  • 강원기;최운하김상희
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.263-266
    • /
    • 1998
  • This paper propose a prefilter type inverse control algorithm using chaotic neural networks. Since the chaotic neural networks show robust characteristics in approximation and adaptive learning for nonlinear dynamic system, the chaotic neural networks are suitable for controlling robotic manipulators. The structure of the proposed prefilter type controller compensate velocity of the PD controller. To estimate the proposed controller, we implemented to the Cartesian space control of three-axis PUMA robot and compared the final result with recurrent neural network(RNN) controller.

  • PDF

A Study on the Speed Control of Induction Motor using a PID Controller and Neural Network Controller (PID제어기와 신경회로망 제어기를 이용한 유도전동기의 속도제어에 관한 연구)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1993-1997
    • /
    • 2009
  • Robust control for DC servo motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, PID-neural network hybrid control method for motor control system is presented. The output of neural network controller is determined by error and rate of error change occurring in load disturbance. The robust control of DC servo motor using neural network controller is demonstrated by computer simulation.

Optimal control of impact machines using neural networks

  • Sasaki, Motofumi;Nakagawa, Makoto;Koizumi, Kunio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.91-94
    • /
    • 1995
  • A newly developed discrete-time control design method for impact machines is proposed. It is composed of identification and control using neural networks, where the optimal controller with saturationn and no use of velocity measurements is obtained. By computer simulation, the proposed method is demonstrated to be effective: as the training progresses, the cost function becomes smaller, the proposed control is superior to PID control tuned with Ziegler-Nichols (Z-N) parameters; robust performance with respect to uncertainty, disturbances and working time is so good.

  • PDF

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

Stable Input-Constrained Neural-Net Controller for Uncertain Nonlinear Systems

  • Jang-Hyun Park;Gwi-Tae Park
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.108-114
    • /
    • 2002
  • This paper describes the design of a robust adaptive controller for a nonlinear dynamical system with unknown nonlinearities. These unknown nonlinearities are approximated by multilayered neural networks (MNNs) whose parameters are adjusted on-line, according to some adaptive laws far controlling the output of the nonlinear system, to track a given trajectory. The main contribution of this paper is a method for considering input constraint with a rigorous stability proof. The Lyapunov synthesis approach is used to develop a state-feedback adaptive control algorithm based on the adaptive MNN model. An overall control system guarantees that the tracking error converges at about zero and that all signals involved are uniformly bounded even in the presence of input saturation. Theoretical results are illustrated through a simulation example.

  • PDF

Nonlinear Friction Control Using the Robust Friction State Observer and Recurrent Fuzzy Neural Network Estimator (강인한 마찰 상태 관측기와 순환형 퍼지신경망 관측기를 이용한 비선형 마찰제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.90-102
    • /
    • 2009
  • In this paper, a tracking control problem for a mechanical servo system with nonlinear dynamic friction is treated. The nonlinear friction model contains directly immeasurable friction state and the uncertainty caused by incomplete modeling and variations of its parameter. In order to provide the efficient solution to these control problems, we propose a hybrid control scheme, which consists of a robust friction state observer, a RFNN estimator and an approximation error estimator with sliding mode control. A sliding mode controller and a robust friction state observer is firstly designed to estimate the unknown infernal state of the LuGre friction model. Next, a RFNN estimator is introduced to approximate the unknown lumped friction uncertainty. Finally, an adaptive approximation error estimator is designed to compensate the approximation error of the RFNN estimator. Some simulations and experiments on the mechanical servo system composed of ball-screw and DC servo motor are presented. Results demonstrate the remarkable performance of the proposed control scheme.

A Robust Nonlinear Control Using the Neural Network Model on System Uncertainty (시스템의 불확실성에 대한 신경망 모델을 통한 강인한 비선형 제어)

  • 이수영;정명진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.838-847
    • /
    • 1994
  • Although there is an analytical proof of modeling capability of the neural network, the convergency error in nonlinearity modeling is inevitable, since the steepest descent based practical larning algorithms do not guarantee the convergency of modeling error. Therefore, it is difficult to apply the neural network to control system in critical environments under an on-line learning scheme. Although the convergency of modeling error of a neural network is not guatranteed in the practical learning algorithms, the convergency, or boundedness of tracking error of the control system can be achieved if a proper feedback control law is combined with the neural network model to solve the problem of modeling error. In this paper, the neural network is introduced for compensating a system uncertainty to control a nonlinear dynamic system. And for suppressing inevitable modeling error of the neural network, an iterative neural network learning control algorithm is proposed as a virtual on-line realization of the Adaptive Variable Structure Controller. The efficiency of the proposed control scheme is verified from computer simulation on dynamics control of a 2 link robot manipulator.

  • PDF