• Title/Summary/Keyword: robust adaptive control

Search Result 535, Processing Time 0.045 seconds

A study on Real-Time Implementation of Robust Control for Horizontal Articulated Arm with Eight Axis

  • Nguyen, Hoo-Cong;Kim, Jun-Hong;Lee, Hee-Seop
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.139-149
    • /
    • 2015
  • In this paper, we describe a new approach to perform real-time implementation of an robust controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for robot manipulator consisting of dual arm with eight degrees of freedom at the joint space and cartesian space.

Robust Adaptive Fuzzy Controller Using a Sliding Control Input (슬라이딩 제어 입력을 이용한 강인 적응 퍼지 제어기)

  • 이선우;박윤서
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.35-38
    • /
    • 1998
  • Abstracts In this paper, we propose a robust adaptive fuzzy control scheme using a sliding control input for tracking of a class of MISO nonlinear systems with unknown bounded external disturbances. In the proposed scheme, the nonlinearity is estimated adaptively via a fuzzy inference based on a fuzzy model. A sliding control input is introduced such that boundedness of all signals in the system is guaranteed even though the existence of a fuzzy approximation error and external disturbances. The controller parameters are updated by using a proposed adaptation law, which is similar 1-modification method. Computer simulation shows the effectiveness of the proposed control scheme.

  • PDF

Robust adaptive controller design for robot manipulators (로봇 매니퓰레이터에 대한 강인한 적응 제어기의 설계)

  • Jung, Seok-Woo;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.889-894
    • /
    • 1993
  • This paper presents a robust adaptive control scheme based on the Lyapunov design for robot manipulators subjected to inertial parameter uncertainties and bounded torque disturbances. The scheme is a modified version of the adaptive computed torque method which adopts a dead zone into the adaptation mechanism so as to avoid parameter drifts by disturbances. It is shown via stability analysis and computer simulations that all the signals in the overall adaptive system are bounded and tracking errors lie within a prespecified bound.

  • PDF

Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM (PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구)

  • Go, Jong-Seon;Yun, Seong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF

A Study on the Structure and Adaptive Methods for Robust Adaptive Control and its Simulation (견실한 적응제어를 위한 구조 및 적응 방법에 관한 인구와 시뮬레이션)

  • 윤태웅;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.7
    • /
    • pp.484-491
    • /
    • 1987
  • A sufficent condition for the robust control of the adaptive control system is presented under the convergence of the parameters of the adaptive system. The plant in the adaptive control system is a stable system which includes the unmodelled dynamics and can be approximated by a minimum phase system. It is shown that modified structure which Kosut and Friedlander suggested satisfies the sufficient condition more easily than the original structure without modification. It is also shown by computer simulation that the modified structure and/ or the adaptation method using the normalized input and output data or filtered input and output data can improve the robustness of the adaptive control system.

  • PDF

Robust Control of Planar Biped Robots in Single Support Phase Using Intelligent Adaptive Backstepping Technique

  • Yoo, Sung-Jin;Park, Jin-Rae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.269-282
    • /
    • 2007
  • This paper presents a robust control method via the intelligent adaptive backstepping design technique for stable walking of nine-link biped robots with unknown model uncertainties and external disturbances. In our control structure, the self recurrent wavelet neural network(SRWNN) which has the information storage ability is used to observe the uncertainties of the biped robots. The adaptation laws for all weights of the SRWNN are induced from the Lyapunov stability theorem, which are used for on-line controlling biped robots. Also, we prove that all signals in the closed-loop adaptive system are uniformly ultimately bounded. Through computer simulations of a nine-link biped robot with model uncertainties and external disturbances, we illustrate the effectiveness of the proposed control system.

Design of a Continuous Adaptive Robust Control Estimating the Upper Bound of the Uncertainties using Fredholm Integral Formulae (Fredholm 적분식을 이용하여 불확실성의 경계치를 추정하는 적응강인제어기 설계)

  • 유동상
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.207-211
    • /
    • 2004
  • We consider a class of uncertain nonlinear systems containing the uncertainties without a priori information except that they are bounded. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound. Using this adaptive upper bound, a continuous robust control which renders uncertain nonlinear systems uniformly ultimately bounded is designed.

Robust adaptive controller design for robot manipulator (로보트 매니퓰레이터에 대한 강건한 적응제어기 설계)

  • 안수관;배준경;박종국;박세승
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.177-182
    • /
    • 1989
  • In this paper a new adaptive control algorithm is derived, with the unknown manipulator and payload parameters being estimated online. In practice, we may simplify the algorithm by not explicity estimating all unknown parameters. Further, the controller must be robust to residual time-varying disturbance, such as striction or torque ripple. Also, the reference model is a simple douple integrator and the acceleration input for robot manipulator consists of a proportion and derivative controller for trajectory tracking purposes. The validity of this control is confirmed in simulation where two-link robot manipulator shows the robust performances in spite of the existing nonlinear interaction and unknown parametrictings

  • PDF

A Study on an Adaptive Robust Fuzzy Controller with GAs for Path Tracking of a Wheeled Mobile Robot

  • Nguyen, Hoang-Giap;Kim, Won-Ho;Shin, Jin-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.12-18
    • /
    • 2010
  • This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties. The robot dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy basis function network (FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust input to overcome the uncertainties, and a stabilizing control input. Genetic algorithms are employed to optimize the fuzzy rules of FBFN. The stability and the convergence of the tracking errors are guaranteed using the Lyapunov stability theory. When the controller is designed, the different parameters for two actuator models in the dynamic equation are taken into account. The proposed control scheme does not require the accurate parameter values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control scheme are demonstrated through computer simulations.

Design of an Adaptive Backstepping Speed Controller for the Wind Power Generation System (풍력발전시스템의 적응백스테핑 속도제어기 설계)

  • Hyun, Keun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.211-216
    • /
    • 2005
  • In this paper a robust controller using adaptive backstepping technique is proposed to control the speed of wind power generation system. To make wind power generation truly cost effective and reliable, advanced and robust control algorithms are derived to on-line adjust the excitation winding voltage of the generator based on both mechanical and electrical dynamics. This method is shown to be able to achieve smooth and asymptotic rotor speed tracking, as justified by analysis and computer simulation.