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Robust Adaptive Fuzzy Controller Using a Sliding Control Input
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Abstracts In this paper, we propose a robust adaptive fuzzy control scheme using a sliding control
input for tracking of a class of MISO nonlinear systems with unknown bounded external distur-
bances. In the proposed scheme, the nonlinearity is estimated adaptively via a fuzzy inference
based on a fuzzy model. A sliding control input is introduced such that boundedness of all signals
in the system is guaranteed even though the existence of a fuzzy approximation error and external
disturbances. The controller parameters are updated by using a proposed adaptation law, which
is similar e;-modification method. Computer simulation shows the effectiveness of the proposed

control scheme.
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1 Introduction

Recently, the stability of the adaptive fuzzy control
scheme has been studied by many researchers [1, 2].
Most such control schemes cannot avoid the exis-
tence of an approximation error between a fuzzy
logic system and a nonlinearity of the controlled
system. The approximation error may cause the
system to be unstable. Therefore, a fuzzy controller
should be designed to be robust in the presence of
an approximation error and/or an external distur-
bance. Wang introduced a supervisory control in-
put to resolve the problem [1]. The adaptive fuzzy
controller with sliding control input has been pro-
posed in [3]. Lee [4] proposed a control scheme
which has a time varying sliding control input to
overcome the problem. Kim [2] attacked the prob-
lem by modifying an estimation algorithm of the
parameters.

In this paper, a robust adaptive fuzzy controller
for a class of MISO nonlinear systems. The pro-
posed controller structure is same as the controller
proposed in [4], but the estimation algorithm is
changed to make the controller to be more robust

Fuzzy Logic Control, Robust Adaptive Control, Variable Structure Control(VSC)

to the disturbances. The proposed estimation algo-
rithm is originated from the e;-modification [5]. All
signals of overall system is guaranteed in the sense
of Lyapunov even though the disturbances. The ro-
bustness of the proposed controller is compared to
the adaptive fuzzy controller combined with dead
zone technique [4] using computer simulations.

2 Robust Adaptive Fuzzy Control

Consider the nth-order nonlinear systems of the
form

, 2™ (8)) + d(8) = u(t)
(1)

where f(-) is an unknown but bounded continu-
ous function, u(t) is the control input and d(2)
is an unknown bounded external disturbance, i.e.
ld(t)| < eq, Vt > 0.

The control objective is to force the plant state
vector, z = [z,,--- ,z("‘l)]T to follow a desired
trajectory, z, = [zq,Zd, - :cd" 1)] Let us define
the tracking error vector e(t) and the error metric

2™ () + f(a(t), &(2), -



s(t) as follows:

e(t) = z4(t) — z(t)

st) = (L4 0 le(t), A>0

@)
(%

which, given the canonical form of the plant dy-
namics (1), can be rewritten as s(t) = ATe(t) with
AT = (n = D)AP2,.. 1),

Now, we consider a fuzzy logic system as an esti-
mator of a nonlinear systems. We use the following
fuzzy logic system [1] :

M
fr(z) = ,; O &k (z) 3)

=0"¢(z)

where M is the number of the fuzzy rules, 8§ =

[017 e 70M]T) é(:@.) = [é’t(l)? U 7§M(£)]Ta Ek(g) is
the fuzzy basis function defined by

T, Hpk (zi))
Soaly (T s ()

0r are adjustable parameters, and pp: are given
membership functions, which can be Géussian, tri-
angular or any other type of membership functions.

Let us consider the approximation error between
the fuzzy logic system and the nonlinear function.
It is well known that the fuzzy logic system is capa-
ble of uniformly approximating any nonlinear func-
tion to any degree of accuracy. So we can assume
that the approximation error is bounded but un-
known as

&(z) = (4)

v(t) = f(z) — frz(z) <€a, Vt>0.  (5)
The proposed control input is designed as

u(t) = () + kas(t) + f=(2/8) + ff(t)sat(S(t)/t(s))
6

where z.(t) = :cfi") (t) + ATe(t) with AT =
[0,A"=1 (n = DA""2, -+ (n — D)A], =P (2) is the
nth derivative of the desired trajectory, k4 is a posi-
tive constant feedback gain, f fz(g|é) is the estimate
of the continuous nonlinear function which will be
obtained adaptively by using the fuzzy logic system,
and k(t) is a gain of the sliding control input which
will be adjusted adaptively to achieve the robust-
ness to the modeling errors and bounded external
disturbances.

Using the above control law, the time derivative
of the error metric s(¢) can be obtained as

$=—kgs — QTé(g) + v +d — ksat(s/d) (7)

where ¢ = § — 8 is defined as the estimation error
of the nonlinear function.

The following estimation algorithm is used to es-
timate the parameters of the fuzzy logic system and
the sliding control gain.

i o Imst@—1s18) sl <o, .
) {msé@) >80
o [omlslk Isl <6,

£ o {772ISI |s] > 6 (9)

where 7; , ¢ = 1,2,3 are positive adaptive gains.
Then, we can get the following theorem.

Theorem 1 Consider the closed-loop adaptive
control system consisting of the plant (1), the con-
trol law (6), (7) and the estimation algorithms
(8). Then, all signals in the closed-loop system are
bounded

Proof: Let us define a Lyapunov function candi-
date as

V() = 510+ + oo+ —R20) (10

where E(t) = k(t) — k , k is defined as the summa-
tion of the upper bound of the modeling error v(t)
and the external disturbance d(t) as:

k=¢€q+e€q4. (11)

When [s| > 4, the time derivative of the Lya-
punov function candidate using equations (6) and
(8) can be easily derived as

V = —kgs® +vs + ds — k|s| + kls]
< —kgs® + (ea +ea)ls| — k|s| + kls|  (12)
= —kys° <0, Vs #0.
Since, the error metric s(t), and the parameter er-
rors k, ¢ are uniformly bounded, if £(0) is bounded,
then e(t) is bounded for all ¢ > 0. This prove that
all signals in the overall system are bounded when
Is} > 4.
When |s| < §, the time derivative is
V = —kgs® +vs +ds — ks® — |s[QTé — |s|kk

< —|s|lkals| + k + k(E + (k+5)) + 0" ¢ — o7 6]
(13)



Hence, V < 0 outside a compact region D as

D = {(s,¢,k)|kals| + k + k(k + (k + s))

+¢'¢—0T0 <0} (4

By “Lagrange stability” Theorem [5], if follows that
all the signals are bounded, when |s| < 0.

Remark 1 Let us consider a robustness of the
adaptive fuzzy control schemes in practical sense.
As commented by Wang [1], we can make the adap-
tive system to have not only the boundedness of the
all states but also the error converge to zero by us-
ing a sliding control input with sufficient big gain.
However, the large control is undesirable because it
may increase implementation cost and excite high
frequency unmodeled dynamics. Moreover, the per-
fect switching is not possible in real world so that it
may break the stability of the the adaptation sys-
tem. The control scheme presented in [4] used a
dead zone adaptation technique and a boundary
layer method to prevent the problems caused from
chattering. As shown in the next section, however,
the control scheme will be diverge in large distur-
bance environment. Since the sliding control gain
is not decreased, if error cannot be reduced suffi-
ciently the gain will be very high. The high gain
may cause the instability. Therefore, in this pa-
per, the e; modification technique was introduced
to adjust the control gain.

3 Computer Simulation

In this section, we show performance of the pro-
posed control scheme by computer simulation ap-
plied to a chaotic system.

Let us consider the Duffing forced oscillation sys-
tem:

ilzzz‘

. 3 (15)
Z9 = —0.1z5 — z7 + 12c0s(t) + d(t) + u(t).

Without control, i.e., u(t) = 0, the system is
chaotic. The external disturbance d(t) is defined
as

0>t <250

d(t) = 0.5sin(6t)
t > 250.

sin(6t)

Let the initial state z(0) = [1.5 0]7, the desired
trajectory z4(t) = sin(t).

We define three fuzzy sets over the interval [-
2,2], and membership functions for z; and =z,
as ppi(z:) = exp(—(z:i + 2)?) , ppi(z:) =
exp(—(2i/0.5)%) and pp;(z:) = exp(~(z; — 2)*).
Hence, there are 9 rules in rule base for fuzzy infer-
ences, that is, M = 9. The initial values of the pa-
rameters of fuzzy logic system are selected to zero,
i.e. Q(O) =0. We choose kg = A =2,m =50,1n =
1, 3 = 20, é = 0.005. The initial values of the slid-
ing control gain k(0) is set to be zero. The Euler’s
approximation method is used for integration with
a sampling period of 0.01 sec.

As commented in Remarks 1, if the gain of the
sliding control input will be too high, which cause
the overall system to be unstable. Figure 1 shows
the instability of the control system with dead zone
estimation algorithm. The response of the proposed
control scheme is shown in Figure 2. It shows that
the sliding control gain k and the parameters of the
fuzzy logic system 6 are bounded. Figure 3 shows
the trajectory of output error e(t). From the figure,
the controller with dead zone estimation algorithm
shows fast and better tracking performance initially
than that with the proposed controller, because of
the high sliding control gain.

4 Conclusion

We have proposed a robust adaptive fuzzy control
scheme using a modified estimation technique to
guarantee the global stability of the overall system.
The proposed estimation algorithm is based on e;
modification technique. Simulation result shows
that the proposed control scheme has more robust-
ness respect to perturbation such as approximation
error and external disturbances than a dead zone
estimation technique. )
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(a) The trajectory of the sliding control input
gain, k(t)
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{(b) The trajectory of the parameter error vector,
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Figure 1: The trajectories of estimated parameters
used by the deadzone estimation method

° A s N " L N . "

a 50 100 150 200 250 300 350 400 450

(a) The trajectory of the sliding control input
gain, k(t)
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(b) The trajectory of the parameter error vector,
6()
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Figure 2: The trajectories of estimated parameters
used by the proposed estimation method
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Figure 3: The comparison of the error trajectory



