• 제목/요약/키워드: robotic systems

검색결과 564건 처리시간 0.036초

뉴럴 러닝 기반 로봇 손가락의 역기구학 (Neural Learning-Based Inverse Kinematics of a Robotic Finger)

  • 김병호
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.862-868
    • /
    • 2007
  • 일반적으로 인간손에 있는 검지 손가락의 평면운동은 3개의 관절운동에 의해 이루어진다. 이러한 운동을 위해서는 기본적으로 역기구학 문제를 풀어야 하는데, 이것은 로봇 손을 이용한 파지나 조작행위에 있어서 필수적이다. 따라서 본 논문에서는 이러한 로봇 손가락의 역기구학 문제를 지능적으로 해결할 수 있는 뉴럴 러닝에 기반한 방법을 제안하고자 한다. 제안된 방법은 뉴럴 러닝에 있어서 동적인 학습율을 적용함으로써 보다 빠른 학습이 가능하고, 생체모방에 근거한 인간 손가락의 운동특성을 고려하는 것이 특징이다. 제안된 방법의 유용성을 입증하기 위하여 시뮬레이션을 수행한다.

Minimum time path planning of robotic manipulator in drilling/spot welding tasks

  • Zhang, Qiang;Zhao, Ming-Yong
    • Journal of Computational Design and Engineering
    • /
    • 제3권2호
    • /
    • pp.132-139
    • /
    • 2016
  • In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP) and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA) is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.

Networked Robots using ATLAS Service-Oriented Architecture in the Smart Spaces

  • Helal, Sumi;Bose, Raja;Lim, Shin-Young;Kim, Hyun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권4호
    • /
    • pp.288-298
    • /
    • 2008
  • We introduce new type of networked robot, Ubiquitous Robotic Companion (URC), embedded with ATLAS Service-oriented architecture for enhancing the space sensing capability. URC is a network-based robotic system developed by ETRI. For years of experience in deploying service with ATLAS sensor platform for elder and people with special needs in smart houses, we need networked robots to assist elder people in their successful daily living. Recently, pervasive computing technologies reveals possibilities of networked robots in smart spaces, consist of sensors, actuators and smart devices can collaborate with the other networked robot as a mobile sensing platform, a complex and sophisticated actuator and a human interface. This paper provides our experience in designing and implementing system architecture to integrate URC robots in pervasive computing environments using the University of Florida's ATLAS service-oriented architecture. In this paper, we focus on the integrated framework architecture of URC embedded with ATLAS platform. We show how the integrated URC system is enabled to provide better services which enhance the space sensing of URC in the smart space by applying service-oriented architecture characterized as flexibility in adding or deleting service components of Ubiquitous Robotic Companion.

압전소자로 구동되는 유연성 로봇 핑거의 제어 (The Control of a flexible Robotic Finger Driven by PZT)

  • 류재춘;박종국
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.568-576
    • /
    • 1998
  • In this thesis discuss with a flexible robotic finger design and controller which is used for the micro flexible robotic finger. So, miniaturization, precision, controller for the control of grasping force and actuator were needed. And, even if we develop a new actuator and controller, in order to use on real system, we must considerate of a many side problem. In a force control of micro flexible finger for grasping an object, the fingertip's vibration was more important task of accuracy control. And, controller were adopt the PD/PI mixed type fuzzy controller. The controller were consist of two part, one is a PD type fuzzy controller for increase the rising time response, the other is a PI type fuzzy controller for decrease of steady-state error. Especially, in a PD type fuzzy controller, we used only seven rules. And, for a PI controller, we adopt a reset factor for the control of input values. so, we have overcome the exceed of controller's input range. For the estimate of ontroller's utility and usefulness, we have experiment and computer simulation of three cases. First, we consider of unit force grasping control for a task object, which is 0.03N. Second, bounding grasping force control which is add to a sinusoidal force on the unit force. At this cases the task force is (0.03+0.01 sin wt N). And consider of following of rectangular forces.

  • PDF

Adaptive Distributed Autonomous Robotic System based on Artificial Immune Network and Classifier System

  • Hwang, Chul-Min;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1286-1290
    • /
    • 2004
  • This paper proposes a Distributed Autonomous Robotic System (DARS) based on an Artificial Immune Network (AIN) and a Classifier System (CS). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: aggregation and dispersion. AIN decides one between these two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the CS in the local. The relation between global and local increases the performance of system. Also, the proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.

  • PDF

F/T sensor application for robotic deburring

  • Park, Jong-Oh;Lee, Heck-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1677-1680
    • /
    • 1991
  • Machining is a bottleneck in robot application technologies because of uncertainty of position/form, poor reliability of robot function and low reaction speed of robot to changes of surroundings, But in grinding automation with relatively low machining speed it is feasible to integrate of sensor signal in machining. In this paper strategy for robotic grinding with F/T sensor will be presented and with that the experimental results will be discussed. F/T sensor signal in grinding of strategy weld seam are transferred to PC, which plays a role as cell computer and transform F/T data to robot position and/or orientation, speed correction data according to programmed algorithm. The possibility and boundary of robotic grinding with F/T sensor intergration is discussed.

  • PDF

로봇 매니퓰레이터를 위한 삼분 비선형 슬라이딩 모드를 가지는 가변구조 제어 (VSC with three-segment nonlinear sliding mode for robot manipulator)

  • 최성훈;전경한;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.69-72
    • /
    • 1996
  • In this paper robust tracking control scheme using the new three-segment nonlinear sliding mode technique for nonlinear rigid robotic manipulator is developed. Sliding mode consists of three segments, the promotional acceleration segment, the constant velocity segment and the deceleration segment using terminal sliding mode. Strong robustness and fast error convergence can be obtained for rigid robotic manipulators with large uncertain dynamics by using the new three-segment nonlinear sliding mode technique together with a few useful structural properties of rigid robotic manipulator. The efficiency of the proposed method for the tracking has been demonstrated by simulations for two-link robot manipulator.

  • PDF

원전 증기발생기 유지보수용 원격로봇 시스템 개발 (Development of a tele-robotic system for steam generator maintenance works)

  • 황석용;김창회;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1519-1522
    • /
    • 1996
  • In this paper, we have developed a tele-robotic system for nozzle dam installation/removal works and tube relating maintenance works inside unclear power plant steam generator. Developed tele-robotic system consists of many hardwares including robot and a control system. Based on the 3 dimensional graphic simulation, a 6 D.O.F. hydraulic actuated robot and a 2 D.O.F. robot install/removal device have been developed. And also we deviced special tools for nozzle dam carry and bolting. For the tele-robot and other devices to be controlled at the nonradioactive area outside reactor containment building, we developed a tele-robot control system consisting of supervisory controller and remote controller.

  • PDF

A Navigation Algorithm using Locomotion Interface with Two 6-DOF Robotic Manipulators (ICCAS 2005)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2211-2216
    • /
    • 2005
  • This paper describes a novel navigation algorithm using a locomotion interface with two 6-DOF parallel robotic manipulators. The suggested novel navigation system can induce user's real walking and generate realistic visual feedback during navigation, using robotic manipulators. For realistic visual feedback, the virtual environment is designed with three components; 3D object modeler for buildings and terrains, scene manager and communication manager component. The walking velocity of the user is directly translated to VR actions for navigation. Finally, the functions of the RPC interface are utilized for each interaction mode. The suggested navigation system can allow a user to explore into various virtual terrains with real walking and realistic visual feedback.

  • PDF

Development of Force Reflecting Joystick for Field Robot

  • Song, In-Sung;Ahn, Kyung-Kwan;Yang, Soon-Yong;Lee, Byung-Ryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.132.5-132
    • /
    • 2001
  • In teleoperation field robotic system such as hydraulically actuated robotic excavator, the maneuverability and convenience is the most important part in the operation of robotic excavator. Particularly the force information is important in dealing with digging and leveling operation in the teleoperated excavator. Excavators are also subject to a wide variation of soil-tool interaction forces. This paper presents a new force reflecting joystick in a velocity-force type bilateral teleoperation system. The master system is electrical joystick and the slave system is hydraulically actuated cylinder with linear position sensor. Particularly Pneumatic motor is used newly in the master joystick for force reflection and the information of the pressure of salve cylinder is measured and utilized as the force feedback signal. Also force-reflection gain greatly affects the ...

  • PDF