• Title/Summary/Keyword: robot soccer

Search Result 92, Processing Time 0.039 seconds

Trajectory Planning of Multi Agent Robots for Robot Soccer Using Complex Potential (복소 포텐셜을 이용한 로봇 축구용 다개체 로봇의 경로 계획)

  • Lee, Kyunghee;Kim, Donghan;Rew, Keun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1073-1078
    • /
    • 2012
  • This paper deals with the trajectory planning of multi agent robots using complex potential theory for robot soccer. The complex potential theory is introduced, then the circle theorem is used to avoid obstacles, and the vortex pair is used to make precise kicking direction of robot. Various situations of robot soccer are simulated and the effect of vortex strength and the speed of robots are discussed and the better way to avoid obstacles and to kick the precise direction is found. The feasibilities of complex potential theory to apply for the multi agent robots are successful.

Obstacle Avoidance and Playing Soccer in a Quadruped Walking Robot (4족 보행 로봇의 장애물 회피와 축구하기)

  • Seo, Hyeon-Se;Sung, Young Whee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.3
    • /
    • pp.143-150
    • /
    • 2012
  • In this paper, we introduce an intelligent quadruped walking robot that can perform stable walking and a couple of intelligent behaviors. The developed robot has two sets of ultrasonic sensors and six sets of infrared sensors and can perform obstacle avoidance by detecting obstacles and estimating the distances and directions of those obstacles. The robot also has a stereo camera and can paly soccer by detecting a ball and estimating the 3 dimensional coordinates of the ball. In performing those intelligent behaviors, the robot needs to have the capability of generating its walking patterns, solving the inverse kinematics problem, and interfacing several sensors in realtime. Therefore we designed a hierarchical controller that consists of a main controller and an auxiliary controller. The main controller is a 32-bit DSP that can perform fast floating-point opertaion and the auxiliary one is a 8-bit micro-controller. We showed that the developed quadruped walking robot successfully perform those intelligent behaviors through experiments.

LPD(Linear Parameter Dependent) System Modeling and Control of Mobile Soccer Robot

  • Kang, Jin-Shik;Rhim, Chul-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.243-251
    • /
    • 2003
  • In this paper, a new model for mobile soccer robot, a type of linear system, is presented. A controller, consisting of two loops the one of which is the inner state feedback loop designed for stability and plant be well conditioned and the outer loop is a well-known PI controller designed for tracking the reference input, is suggested. Because the plant, the soccer robot, is parameter dependent, it requires the controller to be insensitive to the parameter variation. To achieve this objective, the pole-sensitivity as a pole-variation with respect to the parameter variation is defined and design algorithms for state-feedback controllers are suggested, consisting of two matrices one of which is for general pole-placement and other for parameter insensitive. This paper shows that the PI controller is equivalent to the state feedback and the cost function for reference tracking is equivalent to the LQ cost. By using these properties, we suggest a tuning procedure for the PI controller. We that the control algorithm in this paper, based on the linear system theory, is well work by simulation, and the LPD system modeling and control are more easy treatment for soccer robot.

Research of soccer robot system strategies

  • Bae, Jong-Il;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.149.4-149
    • /
    • 2001
  • In this paper, the multiple micro robot soccer playing system is introduced at first. Learning and evolving in artificial agents is a difficult problem, but on the other hand a challenging task. In our laboratory, this soccer studies mainly centered on single agent learning problem. The construction of such experimental system has involved lots of kinds of challenges such as robot designing, vision processing, motion controlling. At last we will give some results showing that the proposed approach is feasible to guide the design of common agents system.

  • PDF

Development of Attack Intention Extractor for Soccer Robot system (축구 로봇의 공격 의도 추출기 설계)

  • 박해리;정진우;변증남
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.4
    • /
    • pp.193-205
    • /
    • 2003
  • There has been so many research activities about robot soccer system in the many research fields, for example, intelligent control, communication, computer technology, sensor technology, image processing, mechatronics. Especially researchers research strategy for attacking in the field of strategy, and develop intelligent strategy. Then, soccer robots cannot defense completely and efficiently by using simple defense strategy. Therefore, intention extraction of attacker is needed for efficient defense. In this thesis, intention extractor of soccer robots is designed and developed based on FMMNN(Fuzzy Min-Max Neural networks ). First, intention for soccer robot system is defined, and intention extraction for soccer robot system is explained.. Next, FMMNN based intention extractor for soccer robot system is determined. FMMNN is one of the pattern classification method and have several advantages: on-line adaptation, short training time, soft decision. Therefore, FMMNN is suitable for soccer robot system having dynamic environment. Observer extracts attack intention of opponents by using this intention exactor, and this intention extractor is also used for analyzing strategy of opponent team. The capability of developed intention extractor is verified by simulation of 3 vs. 3 robot succor simulator. It was confirmed that the rates of intention extraction each experiment increase.

A Hierarchical Motion Controller for Soccer Robots with Stand-alone Vision System (독립 비젼 시스템 기반의 축구로봇을 위한 계층적 행동 제어기)

  • Lee, Dong-Il;Kim, Hyung-Jong;Kim, Sang-Jun;Jang, Jae-Wan;Choi, Jung-Won;Lee, Suk-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.133-141
    • /
    • 2002
  • In this paper, we propose a hierarchical motion controller with stand-alone vision system to enhance the flexibility of the robot soccer system. In addition, we simplified the model of dynamic environments of the robot using petri-net and simple state diagram. Based on the proposed model, we designed the robot soccer system with velocity and position controller that includes 4-level hierarchically structured controller. Some experimental results using the stand-alone vision system from host system show improvement of the controller performance by reducing processing time of vision algorithm.

The ball position and Path Plain for the robot-soccer using Optical flow (옵티컬 플로우를 이용한 로봇축구의 볼 위치 및 경로 설정)

  • Yang, Kwang-Hyun;Jung, Hun;Choi, Han-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3004-3006
    • /
    • 1999
  • In this paper, we present the ball position and path plain method for the robot-soccer using optical flow. As we compare a optical flow method with a general method within the accurate and effective ball position information of robot-soccer or the path planning, we prove accurate and effective optical flow algorithm to apply ball position and path plain for robot-soccer

  • PDF

A Vision System for ]Robot Soccer Game (로봇 축구 대회를 위한 영상 처리 시스템)

  • 고국원;최재호;김창효;김경훈;김주곤;이수호;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.434-438
    • /
    • 1996
  • In this paper we present the multi-agent robot system and the vision system developed for participating in micro robot soccer tournament. The multi-agent robot system consists of micro robot, a vision system, a host computer and a communication module. Micro robot are equipped with two mini DC motors witf encoders and gearboxes, a R/F receiver, a CPU and infrared sensors for obstacle detection. A vision system is used to recognize the position of the ball and opponent robots, position and orientation of our robots. The vision system is composed of a color CCD camera and a vision processing unit(AISI vision computer). The vision algorithm is based on morphological method. And it takes about 90 msec to detect ball and 3-our robots and 3-opponent robots with reasonable accuracy

  • PDF

Path Planning of Soccer Robot using Bezier Curve (Bezier 곡선을 이용한 축구로봇의 경로 계획)

  • 조규상;이종운
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.161-165
    • /
    • 2002
  • This paper describe a trajectory generation method for a soccer robot using cubic Bezier curve. It is proposed that the method to determine the location of control points. The control points are determined by the distance and the velocity parameters of start and target positions. Simulation results show its traceability of the trajectory of mobile robot.

  • PDF