• Title/Summary/Keyword: robot learning

Search Result 847, Processing Time 0.031 seconds

A Learning Controller for Repetitive Gait Control of Biped Walking Robot

  • Kho, Jae-Won;Lim, Dong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1464-1468
    • /
    • 2004
  • This paper presents a learning controller for repetitive gait control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured according to the walking period through the iterative learning, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of learning control to biped robotic motion is shown via dynamic simulation with 12-DOF biped walking robot.

  • PDF

A computed-error-input based learning scheme for multi-robot systems

  • Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.518-521
    • /
    • 1995
  • In this paper, a learning control problem is formulated for cooperating multiple-robot manipulators with uncertain system parameters. The commonly held object is also assumed to be unknown and the multiple-robots themselfs experience uncertain operating conditions such as link parameters, viscous friction parameters, suctions, actuator bias, and etc. Under these conditions, the learning controllers designed for learning of uncertain parameters and robot control inputs for multiple-robot systems are shown to drive the multiple-robot manipulators to follow the desired Cartesian trajectory with the desired internal forces to the unknown object.

  • PDF

A Learning Controller for Repetitive Gate Control of Biped Walking Robot (이족 보행 로봇의 반복 걸음새 제어를 위한 학습 제어기)

  • 임동철;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.538-538
    • /
    • 2000
  • This paper presents a learning controller for repetitive gate control of biped robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of teaming control to biped robotic motion is shown via dynamic simulation with 12 dof biped robot.

  • PDF

Implementation of an Intelligent Learning Controller for Gait Control of Biped Walking Robot (이족보행로봇의 걸음새 제어를 위한 지능형 학습 제어기의 구현)

  • Lim, Dong-Cheol;Kuc, Tae-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • This paper presents an intelligent learning controller for repetitive walking motion of biped walking robot. The proposed learning controller consists of an iterative learning controller and a direct learning controller. In the iterative learning controller, the PID feedback controller takes part in stabilizing the learning control system while the feedforward learning controller plays a role in compensating for the nonlinearity of uncertain biped walking robot. In the direct learning controller, the desired learning input for new joint trajectories with different time scales from the learned ones is generated directly based on the previous learned input profiles obtained from the iterative learning process. The effectiveness and tracking performance of the proposed learning controller to biped robotic motion is shown by mathematical analysis and computer simulation with 12 DOF biped walking robot.

A Study on the Implementation of Crawling Robot using Q-Learning

  • Hyunki KIM;Kyung-A KIM;Myung-Ae CHUNG;Min-Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.15-20
    • /
    • 2023
  • Machine learning is comprised of supervised learning, unsupervised learning and reinforcement learning as the type of data and processing mechanism. In this paper, as input and output are unclear and it is difficult to apply the concrete modeling mathematically, reinforcement learning method are applied for crawling robot in this paper. Especially, Q-Learning is the most effective learning technique in model free reinforcement learning. This paper presents a method to implement a crawling robot that is operated by finding the most optimal crawling method through trial and error in a dynamic environment using a Q-learning algorithm. The goal is to perform reinforcement learning to find the optimal two motor angle for the best performance, and finally to maintain the most mature and stable motion about EV3 Crawling robot. In this paper, for the production of the crawling robot, it was produced using Lego Mindstorms with two motors, an ultrasonic sensor, a brick and switches, and EV3 Classroom SW are used for this implementation. By repeating 3 times learning, total 60 data are acquired, and two motor angles vs. crawling distance graph are plotted for the more understanding. Applying the Q-learning reinforcement learning algorithm, it was confirmed that the crawling robot found the optimal motor angle and operated with trained learning, and learn to know the direction for the future research.

The Study of an Analysis on Early Childhood Teachers' Awareness about R-learning (R-learning 수업에 대한 유치원 교사들의 인식 분석 연구)

  • Han, Soo-Jeong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.129-141
    • /
    • 2012
  • The purpose of this study was to analyze Early Childhood Teachers' awareness of R-Learning. The Subjects were 6 Early Childhood Teachers who experienced to use Robot in their teaching and learning. The data was analyzed through semi-structured in-depth interview and teachers' journals. The results showed possibilities and limitations of R-learning. As possibilities of R-learning, it was found that robot is am attractive teaching materials. In addition, it was found that robot might be an assistant teacher. Third, robot helps children improving their social development. Fourth, teachers might get confident while using robots in their teaching and learning. However, there were limitations of R-learning. First, teachers need to understand what R-learning means. Second, there are some functional problems of R-learning. Third, there are lack of qualitative contents of R-learning. Finally, robots need to be general to every children.

Online Evolution for Cooperative Behavior in Group Robot Systems

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.282-287
    • /
    • 2008
  • In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.

Implementation of a Learning Controller for Repetitive Gate Control of Biped Walking Robot (이족 보행 로봇의 반복 걸음새 제어를 위한 학습제어기의 구현)

  • Lim, Dong-Cheol;Oh, Sung-Nam;Kuc, Tae-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.594-596
    • /
    • 2005
  • This paper present a learning controller for repetitive gate control of biped robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of learning control to biped robotic motion is shown via dynamic simulation and experimental results with 24 DOF biped robot.

  • PDF

Comparative Study on the Educational Use of Home Robots for Children

  • Han, Jeong-Hye;Jo, Mi-Heon;Jones, Vicki;Jo, Jun-H.
    • Journal of Information Processing Systems
    • /
    • v.4 no.4
    • /
    • pp.159-168
    • /
    • 2008
  • Human-Robot Interaction (HRI), based on already well-researched Human-Computer Interaction (HCI), has been under vigorous scrutiny since recent developments in robot technology. Robots may be more successful in establishing common ground in project-based education or foreign language learning for children than in traditional media. Backed by its strong IT environment and advances in robot technology, Korea has developed the world's first available e-Learning home robot. This has demonstrated the potential for robots to be used as a new educational media - robot-learning, referred to as 'r-Learning'. Robot technology is expected to become more interactive and user-friendly than computers. Also, robots can exhibit various forms of communication such as gestures, motions and facial expressions. This study compared the effects of non-computer based (NCB) media (using a book with audiotape) and Web-Based Instruction (WBI), with the effects of Home Robot-Assisted Learning (HRL) for children. The robot gestured and spoke in English, and children could touch its monitor if it did not recognize their voice command. Compared to other learning programs, the HRL was superior in promoting and improving children's concentration, interest, and academic achievement. In addition, the children felt that a home robot was friendlier than other types of instructional media. The HRL group had longer concentration spans than the other groups, and the p-value demonstrated a significant difference in concentration among the groups. In regard to the children's interest in learning, the HRL group showed the highest level of interest, the NCB group and the WBI group came next in order. Also, academic achievement was the highest in the HRL group, followed by the WBI group and the NCB group respectively. However, a significant difference was also found in the children's academic achievement among the groups. These results suggest that home robots are more effective as regards children's learning concentration, learning interest and academic achievement than other types of instructional media (such as: books with audiotape and WBI) for English as a foreign language.

Robot-Assisted Learning in r-Learning (r-Learning에서의 로봇보조학습)

  • Han, Jeong-Hye;Jo, Mi-Heon
    • Journal of The Korean Association of Information Education
    • /
    • v.13 no.4
    • /
    • pp.497-508
    • /
    • 2009
  • As the educational use of intelligent service robots has been proved to be effective, educational service robots have been utilized in kindergarten. In addition, service robots will be used in elementary schools from 2010 for the after-school English program. This trend indicates that r-Learning using service robots will become a major educational paradigm in preparing for future education. This article consists of the following four parts. First, the concept and the type of educational robots were defined and the trend of previous research was examined. Second, the characteristics of robot-assisted learning were analyzed as a part of r-Learning, and difference between r-Learning and u-Learning was compared. Third, the contents and service using a robot-assisted learning system were discussed, the models and trend of service using the robot-assisted learning system were examined, and the aspects of viewing evolution were compared. Finally, suggestions for activating the service market of robot-assisted learning were made for the educational institution, research institution, government and robot companies.

  • PDF