• Title/Summary/Keyword: road test

Search Result 1,810, Processing Time 0.026 seconds

Determination of Proper Application Rate of Curing Compound for Cement Concrete Pavement (콘크리트 포장 양생제의 적정살포량 결정 연구)

  • Kim, Jang-Rak;Suh, Young-Chan;Ahn, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.45-55
    • /
    • 2005
  • It is known that the Q/C(Quality Control) in the early age of portland cement concrete(PCC) pavement gives a huge effect on long term pavement performance. Thus, many studies regarding the construction of PCC pavement have focused on how to assure construction quality at the early age stage. Curing is one of the most important factor in Q/C of PCC pavement. Membrane curing that protects the evaporation of moisture by placing an impermeable layer on the slab surface is the most common practice for curing the PCC pavement. In order to improve the membrane curing practice, the rate of curing compound should be optimized. However, the optimum rate of curing compound considering Korean weather and environmental conditions has not been specified in the pavement construction specifications. In this study, a proper application rate was recommended in terms of minimizing evaporation with several full-scale tests where various rates of curing compound have been applied. Four test sites on the expressway were enlisted during the summer of 2002 and 2003. Application rates tested were in the range of $0. The rate of evaporation, the temperature pattern of the slab and the pulse velocity of concrete surface have been monitored at each test construction. The result from this study showed that the rate of current construction was approximately $160ml/m^2$ and that approximately $400ml/m^2$ of curing application was recommended as the proper rate for minimizing the moisture evaporation.

  • PDF

Analysis of Accident Modification Factors (AMF) for Roadway-Rail Grade Crossing Accidents with Baysian Method (베이지안분석을 이용한 철도건널목 Accident Modification Factors (AMF)에 관한 연구)

  • Oh, Ju-Taek;Choi, Jae-Won;Park, Dong-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.31-42
    • /
    • 2004
  • This study develops Accident Modification Factors (AMF) of countermeasures with Baysian method which are newly proposed for reducing Roadway-Rail grade crossing accidents. This study proposes a new "Bayesian Analytical Framework" for countermeasure assessment which combines "Subjective" Prior Information with "Logical" based Information. The newly proposed "Bayesian Analytical Framework" consists of the following three steps: The 1st step - Countermeasure Selection, Choice of Participants, Selection of Crashes; The 2nd step-Development of Crash History Manual and Countermeasure Evaluation Manual; The 3rd step-Development of AMFs through sound statistical tests. This study used the Komogorov-Smirnov(K-S) Test to determine whether two unknown distribution functions associated with the two populations are identical. The results of the study are that individual responses did not meet the K-S test of identical distributions. while individual vs. group distributions are identical. This indicates that combining the input of several people reduces the impact of individual subjectivity and assumptions and is important for developing a repeatable distribution to develop sound AMFs of countermeasures for reducing Roadway-Rail grade crossing accidents. The procedures of the AMF development conducted in this study can be used to estimate the safety effects of countermeasures for road segments and intersections, in addition to Roadway-Rail grade crossings.

Hydraulic Characteristics of Shallow Geology in Dongrae Area, Busan Megacity (부산광역시 동래지역 천부지질의 수리적 특성)

  • Ryu, Sang-Hun;Hamm, Se-Yeong;Jeong, Jae-Hyeong;Han, Suk-Jong;Cheong, Jae-Yeol;Jang, Seong;Kim, Hyoung-Su
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.55-68
    • /
    • 2008
  • At present underground structures such as road tunnels, railway tunnels, underground petroleum storages and radioactive waste storages are being constructed in numerous places in Korea. For the construction of underground structrues, it should be accounted for natural factors (geology, hydrogeology, soil, vegetation, topography and drainage patterns) and human-social factors (land use, urbanization, population, culture and transportation). Especially, hydrogeology should be regarded as an important factor for evaluating the safety of underground structures and their impact to groundwater system around the structures. This study aimed to recognize hydrogeological characteristics of shallow formations in the area from Dongrae crossway to Seo-Dong where 45 boreholes were drilled for the construction of Line-3 subway in Busan Megacity. Slug tests for unsaturated and saturated zones were conducted on 30 boreholes in the study area. From the result of the slug tests, it was identified that average zonal hydraulic conductivity in the unsaturated zone was higher than that in the saturated zone. Besides, the slug test result in the saturated zones may reflect hydraulic properties of the upper most part of the saturated zones.

Development of a Interface Structure of Bogie and Carbody in Mountain Tram running on sharp Curves (급곡선 급경사 운행 산악트램의 대차 및 차체 연결 구조 개발)

  • Seo, Sung-il;Mun, Hyung-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.275-282
    • /
    • 2018
  • Mountain trams are an environmental-friendly transportation system that run wirelessly on an embedded track constructed on previous mountain roads, and can run despite the frozen road. On the other hand, there is some difficulty on sharp and steep tracks. In this study, after possible technical problems were defined in mountain trams running on a sharp and steep track, the design solutions for the interface structure of bogie and carbody were proposed. In addition, a prototype was made and its performance was tested to verify the solutions. Because the difference in the distance of the inner and outer rails on a sharp curve is severe enough to interrupt running, independent rotating wheels with different angular speeds were developed and applied. To prevent derailment due to the large attack angle and lateral force caused by the previous vehicle of 2bogie-and-1carbody on the sharp curve, a vehicle with 1bogie-and-1carbody was designed and applied. A prototype vehicle of 1bogie-and-1carbody with independent rotating wheels was made to improve the performance during the test running on a small track. A coupler was designed to absorb the large rotations of 3 degrees-of-freedom between the carbodies of a mountain tram running on the steep curved track. After a small scale prototype was made, the performance was verified by a function test.

Improvement of Marshall Mix Design and Comparative Evaluation with Current Marshall Mix Design Method (마샬 배합설계 방법의 개선과 기존 방법과의 비교 평가)

  • Hwang, Sung-Do;Yoon, An-Sang;Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.13-24
    • /
    • 2004
  • The Marshall mix design method used in Korea, which was described in the design & construction regulation, had been introduced from Japan Highway Cooperation standard guide. Most engineers have thought that it is the major reason that causes pavement distresses. Therefore, there is a need to modify the current Marshall mix design through using the volumetric design concept, which is most widely used in asphalt mix design. The modified mix design determines the preliminary optimum asphalt content at 4% VTM (Voids in Total Mix). If the Marshall properties, which are VFA, VMA, stability, and flow, were satisfied with the requirements, the preliminary optimum asphalt content is determined as the final optimum asphalt content. The modified Marshall mix design considers VMA. while the current Marshall mix design does not consider VMA. By considering the Marshall stability and flow as the criteria instead of design factors, the modified Marshall mix design is able to decrease the errors occurred in Marshall stability test The test was performed to compare the Marshall properties between current and modified Marshall mix design. The left results showed that there was no difference in the Marshall properties, except for VTM. Thus, the modified Marshall mix design can produce the asphalt mixtures with the constant VTM (4%), and it can improve the asphalt mixture quality in Korea.

  • PDF

Development of Mechanistic-empirical Joint Spacing Design Method for Concrete Pavements (역학적-경험적 콘크리트 포장 줄눈간격 설계방법 개발)

  • Park, Joo-Young;Hong, Dong-Seong;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.51-59
    • /
    • 2011
  • Tensile stress occurs and random crack develops in concrete pavement slab when it contracts by variation of temperature and humidity. The tensile stress decreases and the random crack is minimized by sawcutting the slab and inducing the crack with regular spacing. The random crack, joint damage, decrease of load transfer efficiency are caused by too wide joint spacing while too narrow joint spacing leads to increase of construction cost and decrease of comfort. A mechanistic-empirical joint spacing design method for the concrete pavement was developed in this study. Structurally and environmentally weakest sections were found among the sections showing good performance, and design strengths were determined by finite element analysis on the sections. The joint width for which the load transfer efficiency is suddenly lowered was determined as allowable joint with referring to existing research results. The maximum joint spacing for which the maximum tensile stress calculated by the finite element analysis did not exceed the design strength were found. And the maximum joint width expected by the maximum joint spacing were compared to the allowable joint width. The new method developed in this study was applied to two zones of Hamyang-Woolsan Expressway being designed. The same joint spacing as a test section constructed by 8.0m of joint spacing wider than usual was calculated by the design method. Very low cracking measured at 6 years after opening of the test section verified the design method developed in this study.

Initial Imperfection and Axial Strength of Struts with Octagonal Hollow Section fabricated from HR Plate (열연강판 팔각강관 버팀보의 초기편심과 축방향 압축강도)

  • Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Developed in this study were Octagonal-hollow-section(OHS) struts, whose compressive strengths against flexural and local buckling is higher than H-shape or rectangular-hollow-section(RHS) struts with the same unit weight. OHS members are also advantageous in handling and storing compared to circular hollow sections(CHS). OHS members were fabricated from HR Plates by cold forming and fillet welding. 5 numbers of 20m long OHS struts were assembled, each of which consist of two 9.6m long OHS member and two end connection elements made of cast iron. The compressive strength of the OHS strut was evaluated by comparing the test results, design codes and FEM analysis each other. Test results show that all of the struts have almost same or larger compressive strength than Korean Road Bridge Design Code(KRBDC) (2012). The initial imperfections can be estimated by using measured strains and are turned out to be less than L/450 for all the struts tested. The results of FEM analysis show that the variation of initial imperfection has less effects on the compressive strength for struts with vertical surcharge than for those with self-weight only, while the strength decreases as the initial imperfection increases. As the result of this study, the allowable initial imperfection for 20m long OHS struts is recommended to be less than L/350 on job sites.

Laboratory Performance Evaluation of Chemcrete Modified Asphalt Mixtures (켐크리트 개질 아스팔트 혼합물의 실내 공용성 평가)

  • Park, Kyung-Il;Lee, Hyun-Jong;Lee, Kwang-Ho;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.119-133
    • /
    • 2001
  • The stiffness of chemcrete modified asphalt mixtures increase rapidly with time in the presence f oxygen and high temperature, Sometimes the asphalt pavements that have chemcrete modified asphalt mixture applied on the surface none show premature cracking because of the excessive increase in the stiffness f the asphalt mixtures. To mitigate this premature cracking, the chemcrete modified mixtures have been used as a base course material. In this study, the performance of the chemcrete modified asphalt binder and mixtures are investigated through a course of various laboratory tests including dynamic shear rheometer and bending beam rheometer tests for binders and uniaxial tensile fatigue, wheel tracking, and moisture damage tests for the mixtures. And also the resilient modulus of the conventional and chemcrete modified mixtures are compared based on the test results conducted on the specimens obtained from various in-situ test sections. It can be concluded from the tests results that the chemcrete modified mixtures show better rutting resistance than conventional mixtures. The chemcrete modified mixtures may have low temperature cracking when it is applied in the cold region. The stiffness of chemcrete modified mixtures is approximately 50 percent higher than that of conventional mixtures more than two years after the chemcrete modified mixture was applied in the base course.

  • PDF

Evaluation of Unit Side Resistance of Drilled Shafts by Revised SPT N Value (환산SPT N값을 이용한 현장타설말뚝의 단위주면마찰지지력 산정)

  • Yoon, Min-Seung;Lee, Chea-Keon;Kim, Myung-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.5-10
    • /
    • 2013
  • Bearing capacity of a drilled shaft can be separated into side resistance and base resistance. But in domestic design procedure side resistance is usually underestimated compared with base resistance. Results of bi-directional test showed that measured side resistances in each different layers are larger than those evaluated from several suggested methods. In this study, measured side resistances in each different layer of drilled shafts installed in domestic sites are analyzed and compared with evaluated side resistances from the method using revised SPT N value. For weathered rock and soft rock layer, from which rock core can hardly be obtained, we suggested new evaluated methods using revised SPT N value instead of the method using uniaxial compressive strength of rock. Resuts showed that the ranges of side resistance of cohesive and non-cohesive layer are $f_s{\leq}5tf/m^2$ and $f_s{\leq}15tf/m^2$ respectively. Range of side resistance in weathered rock is $15tf/m^2$ < $f_s{\leq}50tf/m^2$ and that in soft rock $f_s{\geq}35tf/m^2$.

Measurement of Vertical-Directional DTV Signal Level Using a Multi-Copter (멀티콥터를 이용한 수직방향 DTV 신호 레벨 측정)

  • Park, Hyung-Do;Lim, Sol;Kim, Dae Jin
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.372-384
    • /
    • 2014
  • DTV field tests have been performed to measure field strength and to check reception ratio on indoor and outdoor sites. They use an antenna of 9m to measure DTV signal in case of outdoor measurement on the road. Modern skyscrapers require the analysis of vertical-directional wave propagation by measuring vertical-directional DTV signal. Even if the field strength is above the reception threshold of $43dB{\mu}V/m$, the reception is impossible in case of strong multi-path or high impulse noise. So, vertical-directional field measurement is essential in environment of tall buildings. In this paper, we developed an octo type multi-copter to measure vertical-directional DTV signal level. A compact and portable DTV signal level meter, an antenna, a microwave transmitter for data transmission, and a recording equipment are equipped in the multi-copter. Three different sites are selected to test the measurement system. Developed measurement system using the multi-copter is very useful in measuring vertical-directional DTV signal, especially in apartments, non-accessible area by vehicles, and forbidden areas.