Journal of the Korea Institute of Military Science and Technology
/
v.13
no.4
/
pp.683-688
/
2010
The ability to navigate autonomously in off-road terrain is the most critical technology needed for Unmanned Ground Vehicles(UGV). In this paper, we present a method for vision-based terrain cover classification using DCT features. To classify the terrain, we acquire image from a CCD sensor, then the image is divided into fixed size of blocks. And each block transformed into DCT image then extracts features which reflect frequency band characteristics. Neural network classifier is used to classify the features. The proposed method is validated and verified through many experiments and we compare it with wavelet feature based method. The results show that the proposed method is more efficiently classify the terrain-cover than wavelet feature based one.
Crosswalk detection is an important part of the Pedestrian Protection System in autonomous vehicles. Different methods of crosswalk detection have been introduced so far using crosswalk edge features, the distance between crosswalk blocks, laser scanning, Hough Transformation, and Fourier Transformation. However, most of these methods failed to detect crosswalks accurately, when they are damaged, faded away or partly occluded. Furthermore, these methods face difficulties when applying on real road environment where there are lot of vehicles. In this paper, we solve this problem by first using a region based binarization technique and x-axis histogram to detect the candidate crosswalk areas. Then, we apply Support Vector Machine (SVM) based classification method to decide whether the candidate areas contain a crosswalk or not. Experiment results prove that our method can detect crosswalks in different environment conditions with higher recognition rate even they are faded away or partly occluded.
Journal of Institute of Control, Robotics and Systems
/
v.15
no.4
/
pp.390-395
/
2009
In this paper, we design an on-road vehicle detection system based on the combination of a camera and a LIDAR system. In the proposed system, the candidate area is selected from the LIDAR data using a grouping algorithm. Then, the selected candidate area is scanned by an SVM to find an actual vehicle. The morphological edged images are used as features in a camera. The principal components of the edged images called eigencar are employed to train the SVM. We conducted experiments to show that the on-road vehicle detection system developed in this paper demonstrates about 80% accuracy and runs with 20 scans per second on LIDAR and 10 frames per second on camera.
Recently, in order to reduce traffic accident related fatalities, increasing number of studies are conducted regarding the vehicle safety enhancement devices. But very few studies about test procedures and requirements for vehicle safety systems are being carried out. Since BSD, as one of the most important safety features, is installed on a new vehicle, its performance test method has to be evaluated. Independent factors irrelevant to the device types including collision position, vehicle speed and closing speed are used to calculate test distance away from the current vehicle. Effect of roadway geometry as radius of curvature is introduced to propose possible misjudgement of following vehicle as adjacent one. The study results would be utilized to enhance the test procedure of BSD performance.
IEMEK Journal of Embedded Systems and Applications
/
v.19
no.5
/
pp.227-234
/
2024
This paper proposes a novel method for effectively classifying 12 vehicle types required for road traffic surveys by utilizing deep learning techniques. In particular, it focuses on the trailer vehicle types, classified as types 8 to 12, which have been challenging in previous research due to data scarcity. A zero-shot learning approach, Grounding DINO, is employed to extract key features that can distinguish these trailer types, addressing the data imbalance issue. This method enables accurate classification of the underrepresented vehicle types, leading to efficient classification across all 12 types. To the best of the authors' knowledge, this is the first attempt to classify 12 vehicle types required for road traffic surveys using publicly available video data.
Kim, Tae Hung;Lim, Kwang Yong;Byun, Hye Ran;Choi, Yeong Woo
KIPS Transactions on Software and Data Engineering
/
v.4
no.11
/
pp.521-528
/
2015
Road-view object classification methods are mostly influenced by weather and illumination conditions, thus the most of the research activities are based on dataset in clean weathers. In this paper, we present a road-view object classification method based on color segmentation that works for all kinds of weathers. The proposed method first classifies the weather and illumination conditions and then applies the weather-specified color models to find the road traffic signs. Using 5 different features of the road-view images, we classify the weather and light conditions as sunny, cloudy, rainy, night, and backlight. Based on the classified weather and illuminations, our model selects the weather-specific color ranges to generate Gaussian Mixture Model for each colors, Green, Yellow, and Blue. The proposed method successfully detects the traffic signs regardless of the weather and illumination conditions.
Chong, Sang Min;Choi, Jai sung;Lee, Jong hak;Lee, Hyun gu
International Journal of Highway Engineering
/
v.19
no.2
/
pp.153-165
/
2017
PURPOSES : With the increasing number of older drivers in an aging society, there is a growing need for research and planning on traffic safety for the older drivers using an improved road geometry design. This study also proposed a modified urban road interchange design, which aims to keep the older drivers away from accident-prone and high-traffic areas of the city. METHODS : In this study, we examined accident data records of older drivers to identify accident-prone zones and intersections; we studied the road geometry at these zones and analyzed if it was an underlying cause for higher number of accidents. Based on the research and subsequent analysis, we suggested plans for improvement of road geometry design at these intersections. RESULTS :By studying historic data and analyzing factors that affect the likelihood of accidents of vehicles driven by older drivers and after studying suitable traffic accident prediction models, we identified the major variables that need to be modified at accident-prone intersections, such as the width of a left turn lane at an intersection and the radius of the right turn lane at a street corner. The results have a significance probability of less than 0.001 and a 95% confidence level. To improve safety at the identified intersection, this study suggests the installation of a left-turn-lane-shaped Positive Offset and a right-turn-lane-shaped Slip Lane concept and an adjustment of intervals between intersections.
Proceedings of the Korea Concrete Institute Conference
/
2008.04a
/
pp.713-716
/
2008
This study is performed to propose a standard to evaluate fire protection assessment for concrete structures during a fire on road tunnel. Recently, a number of road tunnels have been rapidly increased and fire risk also multiplyed according to extend tunnel length, due to natural features and environmentally-friendly road construction in domestic. But we have not yet been prescribed appropriate time-temperature curve for tunnel fire. Therefore we presented fire design model and investigated time-temperature curve proposed by a foreign country considering traffic, a kinds of vehicles which are a basis of heat rate.
Journal of Institute of Control, Robotics and Systems
/
v.9
no.7
/
pp.498-506
/
2003
A computer vision system applied to an intelligent safety vehicle has been required to be worked on a small sized real time special purposed hardware not on a general purposed computer. In addition, the system should have a high reliability even under the adverse road traffic environment. This paper presents a design and an implementation of an onboard hardware system taking into account for high speed image processing to analyze a road traffic scene. The system is mainly composed of two parts: an early processing module of FPGA and a postprocessing module of DSP. The early processing module is designed to extract several image primitives such as the intensity of a gray level image and edge attributes in a real-time Especially, the module is optimized for the Sobel edge operation. The postprocessing module of DSP utilizes the image features from the early processing module for making image understanding or image analysis of a road traffic scene. The performance of the proposed system is evaluated by an experiment of a lane-related information extraction. The experiment shows the successful results of image processing speed of twenty-five frames of 320$\times$240 pixels per second.
This paper describes an image processing algorithm capable of recognizing road lanes by using a CDF(cumulative distribution function). The CDF is designed for the model function of road lanes. Based on the assumptions that there are no abrupt changes in the direction and location of road lanes and that the intensity of lane boundaries differs from that of the background, we formulated the CDF, which accumulates the edge magnitude for edge directions. The CDF has distinctive peak points at the vicinity of lane directions due to the directional and the positional continuities of a lane. To obtain lane-related information a scatter diagram was constructed by collecting edge pixels, of which the direction corresponds to the peak point of the CDF, then the principal axis-based line fitting was performed for the scatter diagram. Noises can cause many similar features to appear and to disappear in an image. Therefore, to reduce the noise effect a recursive estimator of the CDF was introduced, and also to prevent false alarms or miss detection a scene understanding index (DUI) was formulated by the statistical parameters of the CDF. The proposed algorithm has been implemented in real time on video data obtained from a test vehicle driven on a typical highway.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.