• Title/Summary/Keyword: road classification

Search Result 342, Processing Time 0.025 seconds

Classification of the Korean Road Roughness (국내 도로면 거칠기 특성 분류 기준에 관한 연구)

  • Choi, Gyoo-Jae;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.115-120
    • /
    • 2006
  • A Korean Road Roughness Classification(KRC) method is proposed. Using a dynamic road profiling device equipped with the Accelerometer Established Inertial Profiling Reference(AEIPR) method, road profile measurement is performed on various types of public paved roads in Korea. The road profiling data are processed to classify the characteristics of Korean road roughness. The resultant Korean road roughness classification(KRC) is shown different characteristics compared to the road classification proposed by ISO, MIRA, and Wong. The proposed KRC is composed of 8 classes(A-H, very good-poor) based on the power spectral density and is in good agreements with the characteristics of Korean paved road roughness and can be used well in vehicle ride comfort simulation using domestic road profile.

Road marking classification method based on intensity of 2D Laser Scanner (신호세기를 이용한 2차원 레이저 스캐너 기반 노면표시 분류 기법)

  • Park, Seong-Hyeon;Choi, Jeong-hee;Park, Yong-Wan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.313-323
    • /
    • 2016
  • With the development of autonomous vehicle, there has been active research on advanced driver assistance system for road marking detection using vision sensor and 3D Laser scanner. However, vision sensor has the weak points that detection is difficult in situations involving severe illumination variance, such as at night, inside a tunnel or in a shaded area; and that processing time is long because of a large amount of data from both vision sensor and 3D Laser scanner. Accordingly, this paper proposes a road marking detection and classification method using single 2D Laser scanner. This method road marking detection and classification based on accumulation distance data and intensity data acquired through 2D Laser scanner. Experiments using a real autonomous vehicle in a real environment showed that calculation time decreased in comparison with 3D Laser scanner-based method, thus demonstrating the possibility of road marking type classification using single 2D Laser scanner.

AutoML and CNN-based Soft-voting Ensemble Classification Model For Road Traffic Emerging Risk Detection (도로교통 이머징 리스크 탐지를 위한 AutoML과 CNN 기반 소프트 보팅 앙상블 분류 모델)

  • Jeon, Byeong-Uk;Kang, Ji-Soo;Chung, Kyungyong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.14-20
    • /
    • 2021
  • Most accidents caused by road icing in winter lead to major accidents. Because it is difficult for the driver to detect the road icing in advance. In this work, we study how to accurately detect road traffic emerging risk using AutoML and CNN's ensemble model that use both structured and unstructured data. We train CNN-based road traffic emerging risk classification model using images that are unstructured data and AutoML-based road traffic emerging risk classification model using weather data that is structured data, respectively. After that the ensemble model is designed to complement the CNN-based classification model by inputting probability values derived from of each models. Through this, improves road traffic emerging risk classification performance and alerts drivers more accurately and quickly to enable safe driving.

A Study of Classification of Road Tunnel for Fire Safety (안전성 향상을 위한 도로터널 등급에 관한 연구)

  • Yoo, Ji-Oh;Rie, Dong-Ho;Shin, Hyun-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.112-119
    • /
    • 2005
  • In road tunnel, in order to prevents an accident and minimize the damage of an accident in the case of fire, safety facilities and equipments are integral parts. The type and amount of safety facilities are based on tunnel type and length, traffic flow rate, etc. Therefore many countries use a tunnel classification system that categories tunnel into groups, and specifies the necessary emergency equipment for each group. In this study, for the purpose of classifying tunnel based on tunnel ist investigated the domestic and foreign standards and regulations for safety of road tunnel. As a results, we suggest the method of classification of tunnel by traffic performance, tunnel grade, the volume of traffic, fraction of HGV, rules or regulations for transports of dangerous good through tunnel.

A Study on the Model for Classification of Safety in the Curved Section of Road (도로 곡선부의 안전 등급화 모형에 관한 연구)

  • Kim, Gyeong-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.23-29
    • /
    • 2008
  • This research proposes two sub-models and one integrated model for the classification of safety in curve section of road, where the fatal-rate is relatively higher in accidents. The first sub-model calculates the accident-rate by safety-index that is based on the road geometries. The second decides the safety of curve section by the speed difference between before and in the curve. Finally, the integrated model of two sub-modules can classify the safety of curve section of road.

A Study on Road Characteristic Classification using Exploratory Factor Analysis (탐색적 요인분석을 이용한 도로특성분류에 관한 연구)

  • Cho, Jun-Han;Kim, Seong-Ho;Rho, Jeong-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.53-66
    • /
    • 2008
  • This research is to the establishment of a conceptual framework that supports road characteristic classification from a new point of view in order to complement of the existing road functional classification and examine of traffic pattern. The road characteristic classification(RCC) is expected to use important performance criteria that produced a policy guidelines for transportation planning and operational management. For this study, the traffic data used the permanent traffic counters(PTCs) located within the national highway between 2002 and 2006. The research has described for a systematic review and assessment of how exploratory factor analysis should be applied from 12 explanatory variables. The optimal number of components and clusters are determined by interpretation of the factor analysis results. As a result, the scenario including all 12 explanatory variables is better than other scenarios. The four components is produced the optimal number of factors. This research made contributions to the understanding of the exploratory factor analysis for the road characteristic classification, further applying the objective input data for various analysis method, such as cluster analysis, regression analysis and discriminant analysis.

Classification of 3D Road Objects Using Machine Learning (머신러닝을 이용한 3차원 도로객체의 분류)

  • Hong, Song Pyo;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.535-544
    • /
    • 2018
  • Autonomous driving can be limited by only using sensors if the sensor is blocked by sudden changes in surrounding environments or large features such as heavy vehicles. In order to overcome the limitations, the precise road-map has been used additionally. This study was conducted to segment and classify road objects using 3D point cloud data acquired by terrestrial mobile mapping system provided by National Geographic Information Institute. For this study, the original 3D point cloud data were pre-processed and a filtering technique was selected to separate the ground and non-ground points. In addition, the road objects corresponding to the lanes, the street lights, the safety fences were initially segmented, and then the objects were classified using the support vector machine which is a kind of machine learning. For the training data for supervised classification, only the geometric elements and the height information using the eigenvalues extracted from the road objects were used. The overall accuracy of the classification results was 87% and the kappa coefficient was 0.795. It is expected that classification accuracy will be increased if various classification items are added not only geometric elements for classifying road objects in the future.

Detection of Road Lane with Color Classification and Directional Edge Clustering (칼라분류와 방향성 에지의 클러스터링에 의한 차선 검출)

  • Cheong, Cha-Keon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.86-97
    • /
    • 2011
  • This paper presents a novel algorithm to detect more accurate road lane with image sensor-based color classification and directional edge clustering. With treatment of road region and lane as a recognizable color object, the classification of color cues is processed by an iterative optimization of statistical parameters to each color object. These clustered color objects are taken into considerations as initial kernel information for color object detection and recognition. In order to improve the limitation of object classification using the color cues, the directional edge cures within the estimated region of interest in the lane boundary (ROI-LB) are clustered and combined. The results of color classification and directional edge clustering are optimally integrated to obtain the best detection of road lane. The characteristic of the proposed system is to obtain robust result to all real road environments because of using non-parametric approach based only on information of color and edge clustering without a particular mathematical road and lane model. The experimental results to the various real road environments and imaging conditions are presented to evaluate the effectiveness of the proposed method.

Developing an Estimation Model for Safety Rating of Road Bridges Using Rule-based Classification Method (규칙 기반 분류 기법을 활용한 도로교량 안전등급 추정 모델 개발)

  • Chung, Sehwan;Lim, Soram;Chi, Seokho
    • Journal of KIBIM
    • /
    • v.6 no.2
    • /
    • pp.29-38
    • /
    • 2016
  • Road bridges are deteriorating gradually, and it is forecasted that the number of road bridges aging over 30 years will increase by more than 3 times of the current number. To maintain road bridges in a safe condition, current safety conditions of the bridges must be estimated for repair or reinforcement. However, budget and professional manpower required to perform in-depth inspections of road bridges are limited. This study proposes an estimation model for safety rating of road bridges by analyzing the data from Facility Management System (FMS) and Yearbook of Road Bridges and Tunnel. These data include basic specifications, year of completion, traffic, safety rating, and others. The distribution of safety rating was imbalanced, indicating 91% of road bridges have safety ratings of A or B. To improve classification performance, five safety ratings were integrated into two classes of G (good, A and B) and P (poor ratings under C). This rearrangement was set because facilities with ratings under C are required to be repaired or reinforced to recover their original functionality. 70% of the original data were used as training data, while the other 30% were used for validation. Data of class P in the training data were oversampled by 3 times, and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) algorithm was used to develop the estimation model. The results of estimation model showed overall accuracy of 84.8%, true positive rate of 67.3%, and 29 classification rule. Year of completion was identified as the most critical factor on affecting lower safety ratings of bridges.

Survey on Detection and Recognition of Road Marking

  • Vokhidov, Husan;Hong, Hyung Gil;Hoang, Toan Minh;Kang, JinKyu;Park, Kang Ryoung;Cho, Hyeong Oh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1408-1410
    • /
    • 2015
  • Information about the painted road markings and other painted road objects play an important part in keeping safety of drivers. Some researchers have presented research approaches and dealt with road markings detection. In this paper, we present comprehensive survey of these techniques, and review some of them like a machine learning method, template matching method for road markings detection and classification, method of detection and classification of road markings using curve-based prototype fitting, signed edge signature method.