• Title/Summary/Keyword: road cavity

Search Result 58, Processing Time 0.028 seconds

Analysis of Influencing Factors on Cavity Collapse and Evaluation of the Existing Cavity Management System (공동 붕괴를 유발하는 영향인자 분석 및 기존 공동관리 시스템 평가)

  • Lee, Kicheol;Park, Jongho;Choi, Byeong-Hyun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.45-54
    • /
    • 2018
  • In this study, numerical analysis is performed to determine highly influential factors that increase the possibility of asphalt road collapse due to cavity underneath the road. The considered influence factors on road collapse due to underground cavity were the asphalt layer thickness, the cover depth, the cavity width, and the cavity height. The concentrated load and uniform distributed pressure were applied on the top surface of asphalt pavement layers with different shape of cavity and asphalt thickness. For each analysis case of given cavity and asphalt thickness, failure load was analyzed under displacement controlled condition. Based on the analyzed failure loads, the applicability of the cavity management system developed by Seoul city was evaluated. As a result of the analysis, the effect of cavity height on road collapse was not significant while the other factors considerably influenced road collapse. Consequently, degree of road collapse susceptibility should be classified by failure load rather than by the condition of existing cavity.

Preliminary Evaluation of Subsurface Cavity and Road Cave-in Potentials Based on FWD Deflections (FWD 처짐량 기반 도로 공동 및 함몰 위험도 평가 기초 연구)

  • Kim, Tae-Woo;Yoon, Jin-Sung;Lee, Chang Min;Baek, Jongeun;Choi, Yeon-Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.59-68
    • /
    • 2017
  • PURPOSES : The objective of this study is to evaluate the potential risk level of road cave-ins due to subsurface cavities based on the deflection basin measured with falling weight deflectometer (FWD) tests. METHODS: Ground penetrating radar (GPR) tests were conducted to detect road cavities. Then FWD tests were conducted on 13 pavement test sections with and without a cavity. FWD deflections and a deflection ratio was used to evaluate the effect of geometry of the cavity and pavement for road cave-in potentials. RESULTS : FWD deflection of cavity sections measured at 60 cm or a closer offset distance to a loading center were 50% greater than more robust sections. The average deflection ratio of the cavity sections to robust sections were 1.78 for high risk level cavities, 1.51 for medium risk level cavities, and 1.16 for low risk level cavities. The relative remaining service life of pavement with a cavity evaluated with an surface curvature index (SCI) was 8.1% for the high level, 21.8% for the medium level, and 89.8% compared to pavement without a cavity. CONCLUSIONS : FWD tests can be applied to detect a subsurface cavity by comparing FWD deflections with and without a cavity measured at 60 cm or a closer offset distance to loading center. In addition, the relative remaining service life of cavity sections based on the SCI can used to evaluate road cave-in potentials.

Experimental Study on Road-Subsidence Characteristics in Unsaturated Sandy Soils (불포화 사질토의 도로함몰 특성에 관한 실험적 연구)

  • Kweon, Gichul
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2018
  • PURPOSES : The purpose of this study is to identify the road-subsidence mechanism in unsaturated sandy soils. METHODS : A series of soil chamber tests were conducted under various conditions. RESULTS : The cavity-expansion characteristics in unsaturated sandy soils due to seepage were affected by the outlet size, seepage intensity, relative density, and fine content. CONCLUSIONS : In unsaturated sandy soils, the cavity-expansion speed was affected by the outlet size, relative density, seepage intensity, and clay content; however, the cavity-expansion shape was very similar. As the outlet size and seepage intensity increased, the cavity-expansion speed increased. As the relative density increased, the cavity-expansion speed increased because of a sudden decrease in shear strength, resulting from the increased saturation (reduction of matric suction). The cavity expanded faster with the increasing clay content, up to a certain threshold. It expanded at a slower rate once it passed the threshold. Finally, it reached a stable state where the cavity did not expand due to seepage.

Condition Assessment of Various Types of Road Cavities Using DEM (개별요소법을 활용한 도로하부 동공 상태 평가)

  • Kim, Yeonho;Park, Hyunsu;Kim, Byeongsu;Park, Seong-Wan
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.39-47
    • /
    • 2016
  • PURPOSES : Road subsidence occurs owing to road cavities, which cause many social and environmental problems, especially in cities. Recently, road cavities were detected by various ground radars and repair works were carried out against the detected cavities. The condition assessments related to the road cavities are necessary to understand the potential risk of the cavities. Therefore, in this study, a numerical study was performed to assess the various conditions of road cavities. METHODS : The numerical method adopted in this study is the discrete element approach, and it is suitable for analyzing the condition because it can consider the movement of the soil particles in the surrounded cavity areas. In addition, the triaxial test was modeled and performed under various cavity conditions inside the specimens. RESULTS : The conditions of different cavity locations and shapes were analyzed to identify the effect of cavity state. Three general cases of particle size distributions were formulated to identify the effect of surrounding ground conditions. As a result, the degree of decrement and volumetric strain were varied depending on the locations and shapes of the cavity. Only minor changes were observed when the particle size distributions were altered. CONCLUSIONS : The strength reduction was higher when the cavity formed was larger and located in the upper zone. Similar to the cavity shape, strength reduction and volume deformation are more influenced by the width than the length of the cavities. There is an influence from ground conditions such as the particle size distribution, especially on the wide cavity.

A Study on the Selection of GPR Type Suitable for Road Cavity Detection (도로동공 탐지에 적합한 GPR 타입 선정에 관한 연구)

  • Kim, Yeon Tae;Choi, Ji Young;Kim, Ki Deok;Park, Hee Mun
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.69-75
    • /
    • 2017
  • PURPOSES : The purpose of this study is to evaluate different types of Ground Penetrating Radar (GPR) testing for characterizing the road cavity detection. The impulse and step-frequency-type GPR tests were conducted on a full-scale testbed with an artificial void installation. After analyzing the response signals of GPR tests for detecting the road cavity, the characteristics of each GPR response was evaluated for a suitable selection of GPR tests. METHODS : Two different types of GPR tests were performed to estimate the limitation and accuracy for detecting the cavities underneath the asphalt pavement. The GPR signal responses were obtained from the testbed with different cavity sizes and depths. The detection limitation was identified by a signal penetration depth at a given cavity for impulse and step-frequency-type GPR testing. The unique signal characteristics was also observed at cavity sections. RESULTS : The impulse-type GPR detected the 500-mm length of cavity at a depth of 1.0 m, and the step-frequency-type GPR detected the cavity up to 1.5 m. This indicates that the detection capacity of the step-frequency type is better than the impulse type. The step-frequency GPR testing also can reflect the howling phenomena that can more accurately determine the cavity. CONCLUSIONS :It is found from this study that the step-frequency GPR testing is more suitable for the road cavity detection of asphalt pavement. The use of step-frequency GPR testing shows a distinct image at the cavity occurrences.

Signal Pattern Analysis of Ground Penetrating Radar for Detecting Road Cavities (도로동공 탐지를 위한 지표투과레이더의 신호패턴에 관한 연구)

  • Yoon, Jin-Sung;Baek, Jongeun;Choi, Yeon Woo;Choi, Hyeon;Lee, Chang Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.61-67
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to detect road cavities using multi-channel 3D ground penetrating radar (GPR) tests owned by the Seoul Metropolitan Government. METHODS : Ground-penetrating radar tests were conducted on 204 road-cavity test sections, and the GPR signal patterns were analyzed to classify signal shape, amplitude, and phase change. RESULTS : The shapes of the GPR signals of road-cavity sections were circular or ellipsoidal in the plane image of the 3D GPR results. However, in the longitudinal or transverse direction, the signals showed mostly unsymmetrical (or symmetrical in some cases) parabolic shapes. The amplitude of the GPR signals reflected from road cavities was stronger than that from other media. No particular pattern of the amplitude was found because of nonuniform medium and utilities nearby. In many cases where road cavities extended to the bottom of the asphalt concrete layer, the signal phase was reversed. However, no reversed signal was found in subbase, subgrade, or deeper locations. CONCLUSIONS : For detecting road cavities, the results of the GPR signal-pattern analysis can be applied. In general, GPR signals on road cavity-sections had unsymmetrical hyperbolic shape, relatively stronger amplitude, and reversed phase. Owing to the uncertainties of underground materials, utilities, and road cavities, GPR signal interpretation was difficult. To perform quantitative analysis for road cavity detection, additional GPR tests and signal pattern analysis need to be conducted.

Tire Cavity Noise Reducing Material Development (타이어 공명 소음 저감체 개발)

  • Lee, Sang-Ju;Kang, Hyun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.658-661
    • /
    • 2008
  • Vibrations transmitted through rolling tire are major sources of road noise in vehicle interior on the range of $0{\sim}500Hz$. Among various road noises, tire cavity noise makes many problems recently. Vehicle NVH performance has improved better and road surfaces are made well. But tires are changed to high inches and low series. So tire cavity noise becomes more serious. In this paper, a designed material for reducing tire cavity noise is proposed. On the surface inside tire, this material is attached at one position using double-tape. This material disperses the pressure variations inside the tire. So a spindle forces at wheel center are reduced. And tire cavity noise at vehicle interior is also reduced. Durability is verified by tire only test and vehicle test. Noise performance also compared with peak levels after attaching this material.

  • PDF

Study on Interior Noise Transfer Path Analysis by Tire Cavity Resonance (타이어 공동의 공명에 의한 차량 실내음 전달경로 연구)

  • Lee, Sang-Ju;Kang, Byun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.129-133
    • /
    • 2005
  • Vibration transmitted through rolling tire is a major source of road noise in vehicle interior noise on the range of low frequency.($0{\sim}500Hz$) Among various road noises, tire cavity noise has very peak on $200{\sim}250Hz$. And generally it is generated by cavity resonance of tire. In this paper, tire cut-sample is used to calculate the tire cavity frequency. Cavity resonance frequency of tire is measured through vertical/tangential forces at load cell of axle using drum cleat impact. This method is useful to find cavity peak because measured forces do not have complex peaks. And changing the test conditions (air inflation, loads), tire cavity resonance characteristics are identified. Finally, vehicle interior noise is measured as tire/vehicle are changing. As difference of tire vertical force is bigger, interior noise level is higher at cavity frequency. Also we can assume that vehicle sensitivity is important factor at tire cavity noise.

  • PDF

The Study of Reduction Technologies of Tire Cavity Resonance Noise (타이어 공명 소음(Tire Cavity Resonance Noise) 저감에 관한 연구)

  • Bang, M.J.;Choi, S.I.;Choo, K.C.;Lee, H.J.;Son, C.E.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.596-599
    • /
    • 2008
  • Traditionally, tire made a role of function, which is supporting vehicle load, making brake, transferring traction, etc. But tire is a part of vehicle design, nowadays. In accordance with this market trend, customers need a wide tread design tire (i.e. low series tire). Generally low Series Tire means stiffer than general tire. That brings out increasing road noise. (Especially tire cavity resonance noise) Tire noise is divided in structure home noise and air borne noise. Tire cavity resonance noise (structure home noise) come from vibration between tire and vehicle. In the study, we investigated that tire cavity resonance noise is affected by stiffness of tread and sidewall.

  • PDF

A Case Study on Deformation Conditions and Reinforcement Method of Cavity behind the Lining of Domestic Old Tunnel (국내 재래식 터널의 변상현황과 배면공동 보강 사례연구)

  • Kim, Young-Muk;Lim, Kwang-Su;Ma, Sang-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1343-1350
    • /
    • 2005
  • In this study, the whole deformation conditions of domestic old tunnels and reinforcement methods for deformation tunnels were investigated and analysed, and the present conditions, occurrence cause and reinforcement methods of cavity behind the tunnel lining were investigated and analysed comprehensively. The deformation causes of domestic old tunnels could be classified in three kinds : change of earth pressure operating tunnel ground, material problem of concrete lining, mistake of design and construction. As a result of analysis, the tunnel deformation was occurred by not specific cause but various cause As a result of investigation for 455 domestic tunnel data, more than 70% of the tunnel deformation was related to leakage and the other deformation cause also accompanied leakage mostly. An applied reinforcement method was related to leakage and flood prevention measures, but application of reinforcement method for boundary area between tunnel and ground and tunnel periphery which influence on the tunnel stability was still defective. The cavity of domestic old tunnel occupied about 16% of the total tunnel length and about 68% of cavity was located in the crown of tunnel, and besides, the occurrence cause of cavity was analysed to design, construction and management cause. The filling method for cavity using filling material was comprehensively appling to cavity behind tunnel lining.

  • PDF