• Title/Summary/Keyword: road base

Search Result 381, Processing Time 0.033 seconds

Design and Fabrication of Base Station Antenna for ETCS based on DSRC (DSRC 기반의 ETCS 기지국 안테나 설계 및 제작)

  • Ko Jin-Hyun;Kim Nam-Ki;Ha Jae-Kwon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.75-83
    • /
    • 2004
  • This paper describes the design, fabrication, and measurement of a low side lobe antenna for RSE base station of the ETCS which is one of the ITS services. The antenna is installed on the gantry of road side and provides the wireless communication lint between vehicles and RSE. The required characteristics of ETCS base station antenna are low sidelobe and specific beam pattern by the road and install environment and installed place of OBU. To minimize the affects of multipath signal by reflection, Circular polarization is required. To get low sidelobe of antenna, array configuration and weighting factor by Taylor distribution in radiator elements are applied. The measured results of fabricated antenna are as follows; return loss of 130MHz by -10dB, an axial ratio of 2.6dB, and a gain of 17dBi. It is found that the measured beam patterns are similar to design results.

  • PDF

Evaluation of Pavement Responses under Wide Base Tire and Dual Tire Assembly (타이어 종류 (Wide Base Tire and Dual Tire Assembly)에 따른 아스팔트 포장 반응 평가)

  • Cho, Seong-Hwan;Im, Jeong Hyuk;Al-Qadi, Imad L.
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.61-71
    • /
    • 2014
  • PURPOSES : The first generation of wide base tires introduced in the early 1980s was found to cause a significant increase in pavement damage compared to dual-tire assemblies. However, wide base tires have evolved considerably, and a new generation of wide base tire is thought to be comparable to conventional dual tires for pavement damage. A challenge associated with using wide base tires is the accurate quantification of pavement damage induced by these tires. The objective of this study was to investigate the responses of flexible pavement to continuously moving vehicular loading under various tire configurations. METHODS : The comparison of the strain/stress responses of full-depth pavement caused by conventional dual tire assembly and new generation of wide-base tires was performed. The FE model incorporates linear viscoelasticity of asphalt material and continuous moving load using implicit dynamic analysis. RESULTS AND CONCLUSIONS : The result demonstrates that the new wide-base tires caused slightly more fatigue damage and less primary rutting damage in HMA layer than a dual-tire assembly, but caused more secondary rutting damage in subgrade than a dual tire assembly.

A Study on the Type of Pavement Base and Drainage in Mountain Road for the Prevention of the Pavement Damage by Uplift Water Pressure (수치해석을 활용한 산지도로의 상향침투수압으로 인한 포장파손방지를 위한 포장기층종류 및 배수형태의 고찰)

  • Lim, Young-Kyu;Yune, Chan-Young;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Construction of road closed to mountains is inevitable in Korea because the mountainous region in Korea is more than 70% in area. Recently, due to global warming, typhoons or heavy rainfalls frequently occur, and accordingly, mountain roads are seriously damaged by landslides, debris flows, and uplift pressure below pavement. in this study, damage on pavement by uplift pressure was investigated. Various influencing factors such as slope angle, reinforcement of slope surface, thickness of soil cover underlain by rock, and types of drainage system were considered to evaluate uplift pressure acting on the bottom of pavement. Raising of water table up to the surface of slope may depend on the duration and intensity of rainfall. It shows that the installation of subdrain can reduce the uplift water pressure. Therefore, It is concluded that the use of subdrain system is effective to decrease uplift pressure and cement treated base is more endurable than typical crushed-stone base.

An Estimation Model of Historical Cost Using BIM Library for Road Project (도로분야 BIM 라이브러리를 활용한 실적공사비 산정모델 구축)

  • Moon, HyounSeok;Ju, KiBeom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.431-442
    • /
    • 2015
  • Currently, a BIM-based quantity takeoff (QTO) system is mainly focused on architectural projects. To perform this, diverse quantity takeoff methods such as an object-based automatic quantity takeoff, manual quantity and base functions of calculation have widely been utilizing. However, since BIM library for road projects includes structural elements associated with alignment, it is necessary to establish cost estimation system interlocked with historical cost using 3D library by each unit length. Accordingly, the aim of this study is to develop cost estimation model with using a historical cost approach so that it can be utilized in construction planning based on the BIM library for road projects. For this, based on the BIM library for road, the standardized quantity is estimated, and a process for calculating historical cost and a verification model with a 5D simulation was developed by mapping a WBS code with each BIM library object. This can be applied during the approximate cost estimation process in a project planning and an initial design phase for road projects. Besides, it is expected that these results will be utilized in constructing an optimal historical cost estimation process for project libraries.

Stabilization of Lateritic Soil with Eggshell Powder

  • Ndagijima, Jacques;Kim, Kanghyun;Kim, Seunghyun;Shin, Jongho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.1
    • /
    • pp.5-13
    • /
    • 2022
  • In tropical regions, lateritic soil is frequently used in road embankment. However, it is one of the sources of road failure owing to its low strength. Generally, cement and lime are used as stabilizers for lateritic soil, but they are not environmentally friendly. Some studies try to use eggshells, for they are food waste and share the same chemical composition as lime. Previous researchs have shown that eggshell powder could enhance the strength of lateritic soil. This research investigated the effect of particle size of the eggshell powder and the effect of the protein-membrane presence in the eggshell on stabilizing capacity of soil. Through laboratory tests, unconfined compressive strength was examined for various particle sizes. The particle size of eggshell powder ranging between 150 ㎛ and 88 ㎛ was appropriate size that made an excellent stabilizer at 3% concentration. On the other hand, the protein-membrane reduced the stabilizing ability of the eggshell powder when the content of eggshell powder is less than 4% in soil. Numerical analysis of road embankment was performed based on the results obtained in the laboratory tests. It is shown that the eggshell powder has improved the stability of the sub-base of the road embankment.

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

Noise Reduction Characteristic of Total Quiet Pavement System (저소음 포장체의 소음저감 특성)

  • Lee, Kwan-Ho;Park, Woo-Jin
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • The rapid economic development induced the massive road constructions, becoming bigger and high-speed of the vehicles. However, it brings lots of social problems, such as air pollutions, traffic noise and vibration. Special concrete block for the base course of asphalt pavement is needed to decrease traffic noise such as tire's explosive and vehicles sound, applying Helmholtz Resonators theory to asphalt pavement. If it is applied to the area where it happens considerable noise such as a junction, the street of a housing complex and a residential street, it is one of alternative methods to solve the social requirements of noise problems. This research examines couple of laboratory tests for the sound absorption effect of the concrete block and the base concrete block for quiet pavement. The specimens, which is fixed hall-size, space, depth as the condition of this research, are analysed of noise reduction effect using different noise levels of vehicles. Judging from the analysis of test results with vehicle noise volume, measurement distance, a form and size of the hall using the base concrete block, the use of special concrete base and quiet asphalt surface showed a good alternative solution for decreasing traffic noise level, from 4dB to 9dB.

Mechanistic Analysis of Geogrid Base Reinforcement in Flexible Pavements Considering Unbound Aggregate Quality

  • Kwon Jay-Hyun;Tutumluer Erol;Kim Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.37-47
    • /
    • 2006
  • The structural response and performance of a flexible pavement can be improved through the use of geogrids as base course reinforcement. Current ongoing research at the University of illinois has focused on the development of a geogrid base reinforcement mechanistic model for the analysis of reinforced pavements. This model is based on the finite element methodology and considers not only the nonlinear stress-dependent pavement foundation but also the isotropic and anisotropic behavior of base/subbase aggregates for predicting pavement critical responses. An axisymmetric finite element model was developed to employ a three-noded axisymmetric membrane element for modeling geogrid reinforcement. The soil/aggregate-geogrid interface was modeled by the three-noded membrane element and the neighboring six-noded no thickness interface elements. To validate the developed mechanistic model, the commercial finite element program $ABAQUS^{TM}$ was used to generate pavement responses as analysis results for simple cases with similar linear elastic material input properties. More sophisticated cases were then analyzed using the mechanistic model considering the nonlinear and anisotropic modulus property inputs in the base/subbase granular layers. This paper will describe the details of the developed mechanistic model and the effectiveness of geogrid reinforcement when used in different quality unbound aggregate base/subbase layers.

  • PDF

Design theory and method of LNG isolation

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • To provide a simplified method for the base isolation design of LNG tanks, such as $16{\times}104m^3$ LNG tanks, we conducted a derivation and calculation example analysis of the dynamic response of the base isolation of LNG storage tanks, using dynamic response analysis theory with consideration of pile-soil interaction. The ADINA finite element software package was used to conduct the numerical simulation analysis, and compare it with the theoretical solution. The ground-shaking table experiment of LNG tank base isolation was carried out simultaneously. The results show that the pile-soil interaction is not obvious under the condition of base isolation. Comparing base isolation to no isolation, the seismic response clearly decreases, but there is less of an effect on the shaking wave height after adopting pile top isolation support. This indicates that the basic isolation measures cannot control the wave height. A comparison of the shaking table experiment with the finite element solution and the theoretical solution shows that the finite element solution and theoretical solution are feasible. The three experiments are mutually verified.