• Title/Summary/Keyword: river ice

Search Result 29, Processing Time 0.022 seconds

Characteristics of Ice Jam and flow in channel Bends (만곡수로에서의 Ice Jam과 흐름특성)

  • 윤세의
    • Water for future
    • /
    • v.21 no.4
    • /
    • pp.399-406
    • /
    • 1988
  • Presented in this paper is a brief summary of the basic theory and observation from a laboratory investigation aimed at determining flow characteristics and ice jam topography in a sinuous channel, and in a single-bend channel. The sinuous channel comprised thirteen $90^{\circ}$ bends and was of comparatively small s\aspect ratio. The single-bend channel was a $180^{\circ}$ bend, which was an order of magnitude large in width as well as aspect ratios than the sinuous channel. The simulated ices were polyethylene and polypropylene beads and block. The streamwise velocities near the bottom were larger than that of surface in sinuous channel and forming ice jam in sinuous channel, this phenoumena were found strongly. Jams were generally thicker along the inner bank of bends. The path of maximum-streamwise velocity was displaced towards approachs side of the inner bank of bends. Radial variation of jam thickness was to be regular by increasing size of ice fragments. The rate of jam head progression around outer bank of the single bend was faster than that of inner bank and its velocity was roughly steady. With increasing Froude number, jm thickness became less uniformly distributed; being generally thicker along the inner bank and near the jam's toe. Two-layer model might be adaptable for the computing the streamwise velocity in shallow river bends. Two cells of secondary flow cound be expected in ice covered-river bends.

  • PDF

Analysis of Hydraulic Passage Efficiency of Ice-Harbor Type Fishway for Flowrate Change (유량변화에 따른 아이스하버식 어도의 수리학적 이동효율 분석)

  • Jo, Jae An;Han, Eun Jin;Kim, Young Do;Baek, Kyong Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1841-1850
    • /
    • 2013
  • The various types of fishways are installed at the multi-functional weirs in the four major rivers to minimize the negative effect due to the construction of the transverse structures. The movable weir was installed at the upstream of the ice-harbor type artificial fishway of the Dalseong weir in the Nakdong river, which can control the fishway flowrate regardless of the river flowrate. The incoming flowrate to the artificial fishway is closely related with the hydraulic characteristics that dominate the fish passage efficiency. Thus, it is crucial to find out the weir operation rule for properly sustaining efficient fish-passage, such as the optimized flowrate. In this study, the FLOW-3D was used to analyze and compare the various hydraulic characteristics associated with the passage efficiency, based upon the given different flowrate, and subsequently provide the optimized flowrate for the fishway movable weir to maintain the best efficient flow condition for the fish-passage.

The Influence on the Runoff Characteristics by the Land Use in Small Watersheds (소유역의 토지이용이 유출 특성에 미치는 영향)

  • Choi, Ye-Hwan;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.204-208
    • /
    • 2004
  • In the forthcoming 21C, the barometer of cultural lives depends on that the water demand will increase or not. On the opposite site of that, the small watersheds will influence directly on how to cover the surface of watersheds with land use, no planning developing watersheds, and the rearrangement of small rivers. Espacially as the exordinary climatic phenomena, water resources and water content of the small watersheds will be confused oil exactly not to make a plan of water resources. This study area has four small watersheds groups in Gangwon-Do Province, that is, group I five small river watersheds including Changchoncheon etc., group II fiver rivers watersheds including to Hwalsanmogicheon etc., group III five small river watersheds including Singicheon etc., group IV including to Sabulanggolcheon etc. According to the land use such as dry field(or farm), ice field, forest land, building lot arid others, in small watersheds, the amount of runoff will be impacted by precipitation. The comparison between the runoff was getting from Kajiyama Formular and calculated runoff from multi-linear regressed equations by land use percentage was performed. Its correlation which was estimated by coefficient of correlation will be accepted or not, as approched 1.00000 values. As the monthly water resources amount is estimated by multi-linear regressed equations, we make a plan to demand and supply the water quantity from small river watersheds during any return periods.

  • PDF

Efficiency Analysis of the Ice Harbor Type Fishway Installed at the Gongju Weir on the Geum River using Traps (Trap을 이용한 공주보 아이스하버식 어도의 효과분석)

  • Lee, Jin-Woong;Yoon, Ju-Duk;Kim, Jeong-Hui;Park, Sang-Hyeon;Baek, Seung-Ho;Yoon, Jo-Hee;Jang, Min-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.75-82
    • /
    • 2015
  • To overcome the stream fragmentation and blockage of migration of fishes by dams and weirs, fishways are commonly installed. However, limited studies were conducted for effectiveness and suitability of fishways installed in Korean streams. In this study, we investigated fish usages (by time periods, locations and months) of the Ice Harbor type fishway installed in the Gongju weir using traps. The monitoring were monthly conducted from June to October, 2012. The number of individuals which used fishway in September and October decreased than in June to August. Although no statistical significance was identified, many numbers of species and individuals were occurred at the trap installed at the left end of fishway than others. Fishes of more diverse size classes occurred at this trap as well. The number of collected individuals and water level of weir were positively correlated though they showed low correlation coefficient. Conversely, occurrence rate of fishes smaller than 70 mm of total length decreased with increasing water level of weir. fishway usage time of fish were different depends on ecological characteristics of each species. Various sizes of fishes can use fishway for their upstream migration. These results are useful for establishing management and evaluation plans of Ice Harbor type fishway in S. Korea.

Evaluation technique for efficiency of fishway based on hydraulic analysis (수리해석을 기반으로 어도 효율을 평가하는 기법)

  • Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.855-863
    • /
    • 2019
  • The efficiency of fishway installed in rivers can be directly evaluated by means of fish monitoring. On the other hand, when it is difficult to monitor the fish in certain conditions, or when planning a fishway, the efficiency can be evaluated indirectly through the hydraulic analysis. In this study, the hydraulic analysis technique for evaluating the efficiency of a fishway was presented. The River-2D model with the fish physical habitat module was used for the analysis of the attraction efficiency, and the weighted usable area was proposed as an index of the efficiency. In the analysis of passage efficiency, the three-dimensional model, Flow-3D, was used as an evaluation tool to describe the fluid behavior on a hydraulic structure with free surface. The ice-harbor type fishway at Baekgok weir in the Deokcheon River was selected as a test-site, and the efficiency was estimated using the hydraulic analysis. And then it was compared with fish monitoring data acquired from the river. As a result, it is difficult to replace the hydraulic analysis results with the efficiency quantitatively, but it can help to grasp the general tendency.

Development of a Method for Calculating the Allowable Storage Capacity of Rivers by Using Drone Images (드론 영상을 이용한 하천의 구간별 허용 저수량 산정 방법 개발)

  • Kim, Han-Gyeol;Kim, Jae-In;Yoon, Sung-Joo;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.203-211
    • /
    • 2018
  • Dam discharge is carried out for the management of rivers and area around rivers due to rainy season or drought. Dam discharge should be based on an accurate understanding of the flow rate that can be accommodated in the river. Therefore, understanding the allowable storage capacity of river is an important factor in the management of the environment around the river. However, the methods using water level meters and images, which are currently used to determine the allowable flow rate of rivers, show limitations in terms of accuracy and efficiency. In order to solve these problems, this paper proposes a method to automatically calculate the allowable storage capacity of river based on the images taken by drone. In the first step, we create a 3D model of the river by using the drone images. This generation process consists of tiepoint extraction, image orientation, and image matching. In the second step, the allowable storage capacity is calculated by cross section analysis of the river using the generated river 3D model and the road and river layers in the target area. In this step, we determine the maximum water level of the river, extract the cross-sectional profile along the river, and use the 3D model to calculate the allowable storage capacity for the area. To prove our method, we used Bukhan river's data and as a result, the allowable storage volume was automatically extracted. It is expected that the proposed method will be useful for real - time management of rivers and surrounding areas and 3D models using drone.

Provenance of the Sediments of the Araon Mound in the Chukchi Sea, Arctic Ocean (북극 척치해 아라온 마운드 퇴적물의 기원지에 관한 연구)

  • Jang, JeongKyu;Koo, HyoJin;Cho, HyenGoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.15-29
    • /
    • 2021
  • In the Arctic Ocean, the distribution of sea ice and ice sheets changes as climate changes. Because the distribution of ice cover influences the mineral composition of marine sediments, studying marine sediments transported by sea ice or iceberg is very important to understand the global climate change. This study analyzes marine sediment samples collected from the Arctic Ocean and infers the provenance of the sediments to reconstruct the paleoenvironment changes of the western Arctic. The analyzed samples include four gravity cores collected from the Araon mound in the Chukchi Plateau and one gravity core collected from the slope between the Araon mounds. The core sediments were brown, gray, and greenish gray, each of which corresponds to the characteristic color of sediments deposited during the interglacial/glacial cycle in the western Arctic Ocean. We divide the core sediments into three units based on the analysis of bulk mineral composition, clay mineral composition, and Ice Rafted Debris (IRD) as well as comparison with previous study results. Unit 3 sediments, deposited during the last glacial maximum, were transported by sea ice and currents after the sediments of the Kolyma and Indigirka Rivers were deposited on the continental shelf of the East Siberian Sea. Unit 2 sediments, deposited during the deglacial period, were from the Kolyma and Indigirka Rivers flowing into the East Siberian Sea as well as from the Mackenzie River and the Canadian Archipelago flowing into the Beaufort Sea. Unit 2 sediments also contained an extensive amount of IRD, which originated from the melted Laurentide Ice Sheet. During the interglacial stage, fine-grained sediments of Unit 1 were transported by sea ice and currents from Northern Canada and the East Siberian Sea, but coarse-grained sediments were derived by sea ice from the Canadian Archipelago.

A coupled model simulation of the Last Glacial Maximum

  • Kim, Seong-Jung
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2004.11a
    • /
    • pp.37-43
    • /
    • 2004
  • The response of the CCCma coupled climate model to the imposition of LGM conditions is investigated. The global mean SAT and SST decrease by about $10^{\circ}C$ and $5.6^{\circ}C$ in the coupled model. Tropical SST decreases by $6.5^{\circ}C$, whereas CLIMAP reconstructions suggest that the tropics cool by only about $1.7^{\circ}C$, although the larger tropical cooling is consistent with the more recent proxy estimates. With the incorporation of a full ocean component, the coupled model gives a realistic spatial SST pattern, capturing features associated with ocean dynamics that are seen in the CLIMAP reconstructions. The larger decrease of the surface temperature in the model is associated with a reduction in global precipitation rate (about 15%). The tropical Pacific warm pool retreats to the west and a mean La $Ni\tilde{n}a$-like response is simulated with less precipitation over the central Pacific and more in the western tropical Pacific. The more arid ocean climate in the LGM results in an increase in SSS almost everywhere. This is particularly the case in the Arctic Ocean where large SSS increase is due to a decrease in river discharge to the Arctic Ocean associated with the accumulation of snow over the ice sheet, but in the North Atlantic by contrast SSS decreases markedly. This remarkable reduction of SSS in the North Atlantic is attributed to an increase in fresh water supply by an increase in discharges from the Mississippi and Amazon rivers and an increase in P-E over the North Atlantic ocean itself. The discharges increase in association with the wetter LGM climate south of the Laurentide ice sheet and in South America. The fresh water capping of the northern North Atlantic results in a marked reduction of deep convection and consequently a marked weakening of the North Atlantic overturning circulation. In the LGM, the maximum overturning stream function associated with the NADW formation decreases by about 60% relative to the control run, while in the Southern Ocean, oceanic convection is stronger in the LGM due to reduced stratification associated with an increase in SSS and a decrease in SST and the overturning stream function associated with the formation of AABW and the outflow increases substantially.

  • PDF

Eggs Development and Larval Development of the Ice Fish, Hypomesus transpacificus nipponensis McAllister (빙어의 난발생과정과 자어의 형태발달)

  • HAN Kyeong-Ho;LEE Seung-Ju;KIM Yong Uk;MYOUNG Jung-Goo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.4
    • /
    • pp.497-502
    • /
    • 1996
  • Artificial fertilization of ice fish, Mypomesus transpaciticus nipponensis caught at Milyang-river and Osib-chun brook was performed in March 24, 1990, and the hatched larvae were reared for 25 days to describe the development of eggs and larvae. Fertilized eggs were spherical in shape, measuring $0.85\~1.05\;mm$ in diameter (mean: 0.97 mm) and translucent adhesive with many small-sized oil globules on the surface. Hatching in the indoor tank started from the 170 hours after fertilization under $16.5^{\circ}C$ water temperature. Newly-hatched larvae were measured $3.85\~4.25\;mm$ in total length (mean: 4.05 mm), and mouth and anus were not yet open. They had one yolk sac on the anterior part of abdomen, straight-type's notochord, and $52\~54$ myotomes. The larva of 5 days old transformed to postlarval stage and measured $5.20\~5.65\;mm$ (mean: 5.37 mm) in total length. As the yolk sac was completely absorbed, mouth and anus were open, and they fed rotifers vigorously. In 20 days after hatching, the larvae grew to 8.38 mm in TL, and the caudal notochord flex at $45^{\circ}$. In 25 days after hatching, total length reached 9.63 mm. The pan of the fin-fold of the future dorsal and anal fins became high.

  • PDF

Distribution and Circulation of Autumn Low-salinity Water in the East Sea (동해의 가을철 저염수 분포 및 유동)

  • Lee, Dong-Kyu;Lee, Jae Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.207-218
    • /
    • 2017
  • Seawater with salinity of 32.5 psu or less is observed in the southern Japan/East Sea (JES) every autumn. It is confined to a surface layer 30-45 m in depth that expands to cover the entire JES in October. Two sources of "autumn low-salinity water" have been identified from historical hydrographic data in the western JES: East China Sea (ECS) water mixed with fresh water discharge from the Yangtze River (Changjiang) and seawater diluted with melted sea ice in the northern JES. Low-salinity water inflow from the ECS begins in June and reaches its peak in September. Low-salinity water from the northern JES expands southward along the coast, and its horizontal distribution varies among years. A rare observational study of the entire JES in October 1969 indicated that water with salinity less than 33.0 psu covered the southwestern JES; the lowest salinity water was found near the Ulleung Basin. In October 1995, the vertical distribution of salinity observed in a meridional section revealed that water with salinity of 33.6 psu or less was present in the area north of the subpolar front.