A coupled model simulation of the Last Glacial Maximum

  • 김성중 (한국 해양연구원 부설 극지 연구소)
  • Published : 2004.11.12

Abstract

The response of the CCCma coupled climate model to the imposition of LGM conditions is investigated. The global mean SAT and SST decrease by about $10^{\circ}C$ and $5.6^{\circ}C$ in the coupled model. Tropical SST decreases by $6.5^{\circ}C$, whereas CLIMAP reconstructions suggest that the tropics cool by only about $1.7^{\circ}C$, although the larger tropical cooling is consistent with the more recent proxy estimates. With the incorporation of a full ocean component, the coupled model gives a realistic spatial SST pattern, capturing features associated with ocean dynamics that are seen in the CLIMAP reconstructions. The larger decrease of the surface temperature in the model is associated with a reduction in global precipitation rate (about 15%). The tropical Pacific warm pool retreats to the west and a mean La $Ni\tilde{n}a$-like response is simulated with less precipitation over the central Pacific and more in the western tropical Pacific. The more arid ocean climate in the LGM results in an increase in SSS almost everywhere. This is particularly the case in the Arctic Ocean where large SSS increase is due to a decrease in river discharge to the Arctic Ocean associated with the accumulation of snow over the ice sheet, but in the North Atlantic by contrast SSS decreases markedly. This remarkable reduction of SSS in the North Atlantic is attributed to an increase in fresh water supply by an increase in discharges from the Mississippi and Amazon rivers and an increase in P-E over the North Atlantic ocean itself. The discharges increase in association with the wetter LGM climate south of the Laurentide ice sheet and in South America. The fresh water capping of the northern North Atlantic results in a marked reduction of deep convection and consequently a marked weakening of the North Atlantic overturning circulation. In the LGM, the maximum overturning stream function associated with the NADW formation decreases by about 60% relative to the control run, while in the Southern Ocean, oceanic convection is stronger in the LGM due to reduced stratification associated with an increase in SSS and a decrease in SST and the overturning stream function associated with the formation of AABW and the outflow increases substantially.

Keywords