• Title/Summary/Keyword: river channel

Search Result 774, Processing Time 0.028 seconds

An Ecological Study on the Aquatic Animal Community in Tan Stream, Seoul (서울 탄천의 수서동물 군집에 관한 생태학적 연구)

  • 배경석;구본관;한선규;신재영;박성배
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.1-8
    • /
    • 1997
  • The aquatic animals of Tan stream were composed of 46 species, 28 families, 11 orders, 6 classes in 4 phyla during the survey period of April, 1996 to December, 1996. They were composed of 31 species in aquatic insecta, 6 species in annelida, 3 species in mollusca, 1 species in crustacea, and 5 species in fishes, respectively. Major dominant species in Tan stream were Chironomidae sp.1, Chironomidae sp.2, Chironomidae sp.3, Tubufucidae sp.1, Physa acuta and hirudo niponica. Dominance indices of benthic macroinvertebrates ranged highly from 95.74 to 100.00% at lower stream(site 4), but ranged 50.00 to 95.85% at site 1 through site 3. The aquatic animals ranged from 25 to 32 species at site 1 through site 3, but they were only 3 species at site 4 for survey period. Tan stream in the light of urban stream ecosystem has a little less riffle areas and hydrophyte areas by cementation of riparian area and channel type of water course. Therefore, the species of aquatic animals in Tan stream decreased because of deterioration of water quality according to reduction of self-purifcation ability and loss of microhabitat according to reduction of hydrophyte areas and riparian areas. The tendency of decreasing species of aquatic animals appeared seriously at lower stream From drive licence test authority at Kangnam-ku, Seoul to conjunction point of the Han river.

  • PDF

A Study on Interaction of Estuarial Water and Sediment Transport (하구수와 표사의 상호작용에 관한 연구)

  • Lee, H.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.451-461
    • /
    • 2000
  • The design and maintenance of navigation channel and water facilities of an harbor which is located at the mouth of river or at the estuary area are difficult due to the complexity of estuarial water and sediment circulation. Effects of deepening navigable waterways, of changing coastline configurations, or of discharging dredged material to the open sea are necessary to be investigated and predicted in terms of water quality and possible physical changes to the coastal environment. A borad analysis of the transport mechanism in the estuary area was made in terms of sediment property, falling velocity, concentration and flow characteristics. In order to simulate the transport processes, a two-dimensional finite element model is developed, which includes erosion, transport and deposition mechanism of suspended sediments. Galerkin’s weighted residual method is used to solve the transient convection-diffusion equation. The fluid domain is subdivided into a series of triangular elements in which a quadratic approximation is made for suspended sediment concentration. Model could deal with a continuous aggregation by stipulating the settling velocity of the flocs in each element. The model provides suspended sediment concentration, bed shear stress, erosion versus deposition rate and bed profile at the given time step.

  • PDF

Physical Marine Environment at the north of Wando and Gogeumdo Receiving the Effluents from Land (육수의 영향을 받는 완도 및 고금도 북부 해역의 해황 특성)

  • Lee Moon-Ock;Park Il-Heum
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.45-58
    • /
    • 2006
  • In order to grasp physical characteristics of Ganajin Bay receiving the effluents from land, a comprehensive field surve)'has been conducted at the north of Wando and Gogeumdo in 2002. Water temperature was most high in September while most low in December. A high temperature in September was inferred to have caused by the dispersion of warm fresh water with favor of a dominant wind in autumn. However, salinity and sigma-t in situ was most low in September while most high in December. A low salinity (or density) in September turned out to reflect the influence of a dense rainfall in summer. Water temperature, salinity and density at the surface layer were lower than those at the bottom layer, except for December. Their horizontal profiles suggested the influence of effluents such as Tamjin River. Particularly, time series of water temperature acquired near the sluice and at the north channel of Wando tended to rise at the flood flow but fall at the ebb flow in accordance with the tide. The form ratio of the tide in the study area was $0.31\~0.32$ and the amplitude of the tide appeared to increase towards the west. Northeastward or southwestward flows prevailed in this area but the residual flows were all northeastward with a magnitude of $3\~4cm/s$.

Analysis of Channel Geomorphology in the Middle-Lower Reach of Nakdong River (낙동강 중하류부 유로의 지형학적 특성 분석)

  • Ko, Joo Suk;Kwak, Sunghyun;Lee, Kyungsu;Lyu, Siwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.68-72
    • /
    • 2019
  • 대하천사업으로 4대강에 다기능보 건설 및 대규모 준설이 이루어졌으며, 그 과정을 통해 인위적으로 변화된 하천지형은 시간이 경과함에 따라 유사공급과 유수흐름 등 다양한 요인들의 복합적 영향 하에서 지속적 변화과정을 거치게 된다. 따라서 하천의 효율적인 운영 및 관리를 위해서는 하천지형에 대한 연속적인 측정 및 분석을 통해 하천유로의 지형학적 특성과 그 변화의 양상과 정도를 파악하는 것이 필요하다. 본 연구에서는 낙동강 중 하류 구간에 대하여 음향측심기를 이용한 수심측량을 통해 유로의 지형정보를 취득 분석하여 다기능보 건설 후 유로의 지형학적 특성에 있어서의 변화 양상을 파악하고자 하였다. 이를 위하여 취득된 지형자료를 활용하여 유로 단면에 대한 기하학적 특성치들을 통한 형태학적 분석을 실시하였다. 또한 대하천사업 준공시 취득된 측량성과정보와의 비교를 통해 지형변화 양상과 정도를 파악하였다. 이를 통 해 대하천사업 이후 낙동강 중 하류 구간 유로의 지형변화 양상과 규모를 파악할 수 있었으며, 대하천사업 이후 준공측량성과를 기반으로 고시된 하천기본계획 상 지형정보의 정확성에 대해 평가할 수 있었다. 본 연구의 공간적 범위가 낙동강 중 하류 중 일부 구간들에 제한되었기에, 향후 본 연구에서 제안한 방법론을 활용한 지형특성 및 변화의 양상과 규모에 대한 지속적인 평가가 필요할 것으로 판단된다.

  • PDF

Water quality big data analysis of the river basin with artificial intelligence ADV monitoring

  • Chen, ZY;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.219-225
    • /
    • 2022
  • 5th Assessment Report of the Intergovernmental Panel on Climate Change Weather (AR5) predicts that recent severe hydrological events will affect the quality of water and increase water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed, and solar radiation) were compiled into a representative concentration curve (RC), defined using 8.5. AR5 and future use are calculated based on land use. Semi-distributed emission model Calculate emissions for each target period. Meteorological factors affecting water quality (precipitation, temperature, and flow) were input into a multiple linear regression (MLR) model and an artificial neural network (ANN) to analyze the data. Extensive experimental studies of flow properties have been carried out. In addition, an Acoustic Doppler Velocity (ADV) device was used to monitor the flow of a large open channel connection in a wastewater treatment plant in Ho Chi Minh City. Observations were made along different streams at different locations and at different depths. Analysis of measurement data shows average speed profile, aspect ratio, vertical position Measure, and ratio the vertical to bottom distance for maximum speed and water depth. This result indicates that the transport effect of the compound was considered when preparing the hazard analysis.

Numerical Analysis for Bed Changes in the Upstream Channel due to the Installation of Sediment Release Openings in the Flood Control Dam (홍수조절댐에서의 배사관 설치에 따른 상류 하천의 하상변동에 관한 수치모의 연구)

  • Ji, Un;Son, Kwang-Ik;Kim, Mun-Mo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.319-329
    • /
    • 2009
  • Sediment release openings or pipes are installed in the flood control dam constructed to reduce flood damages, which are to allow water and sediments pass through the dam and to prevent flow blockage and sedimentation in the upstream area of the dam. The Hantan River Flood Control Dam (HRFCD) has been projected for flood damage reduction and sediment release openings and ecological passages are considered for the dam design. In this study, sediment deposition due to the construction of HRFCD was analyzed using the HEC-6 model and compared with the state before the dam construction with respect to the conditions of the annual mean daily discharge and annual discharge hydrograph. According to the numerical results, although downstream water levels were changed by the dam structure, the effects of bed changes were not propagated from the dam over 2 km upstream. Also, 2D numerical models of RMA2 and SED2D were used to predict bed changes in the upstream area with and without sediment release openings. Consequently, it is presented that sediment release openings decreased maximum deposition height in the upstream channel of the dam.

A Sensitivity Analysis of Cell Size on a Distributed Non-Point Source Pollution Model (분산형 비점오염원 모델에서 단위유역 크기의 민감도 분석)

  • Bae, In-Hee;Park, Jung-Eun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.952-957
    • /
    • 2005
  • A sensitivity analysis study was performed to examine the effects of cell size on a distributed non-point source pollution model. The model, AnnAGNPS, whiff is a modified version of USDA's AGNPS, was applied to Eung stream watershed, a tributary of Cheongmi stream located in the South Branch of Han River System. The model components and results, such as channel length, slope, land use, and delivery ratio, were analyzed according to the various cell sizes from 10 to 200 ha. As cell sire increases, channel length decreases due to short-circuiting of meandering creek. The decreased channel length has more significant effects on the model results than any other geomorphological change. When the effects of land use and soil distribution are excluded, sediment delivery loads increase due to shorter time to reach the outlet of the watershed in larger tell size. When those effects are included, however, sediment delivery loads decrease in larger fell size because the variety of land use types can not be inputted. The predominant land use in the applied watershed is forest with very low soil erosion such that the predicted sediment delivery might be much lower than real system. The cell size of 30 ha was determined to produce the most appropriate resolution. Surface runoff and non-point source loads of TN, TP and BOD were predicted and the results agree well with the field measurements. From this study, it was shown that the model results would be very dependent on variations of topography, land use, and soil distribution, as a function of cell size, and the optimum cell size is very important for successful application of distributed non-point source pollution model.

3 Dimensional Changes of Bedrock Surface with Physical Modelling of Abrasion (마식에 의한 기반암면의 표면 변화에 대한 실험 연구)

  • Kim, Jong-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.506-525
    • /
    • 2007
  • Incision into bedrock channel is the primary control of landform evolution, but research into bedrock incision process stagnated for long time. Due to the scaling problem of the application of results from flume studies to bedrock channel, there is a strong need to simulate the bedrock incision process with more realistic models. As a part of investigation into controls of bedrock channel incision, three-dimensional changes of rock surface with abrasion was investigated with physical modelling. 18 rock plates were abraded with various sediment particle size and sediment load and abraded surfaces of the plates were scanned with high resolution 3-D scanner. To identify the spatial pattern of erosion of the rock plates, various methods were used. There was no synthetic or holistic method that showed all features of bedrock plate produced by abrasion, so each plate was analyzed using some available methods. Contour maps, shaded relief maps and profiles show that abrasion concentrated on the centre of plate (cross profile) and upstream and downstream edges (longitudinal profile) and eroded area extended inwards. It also found that the cracks and boundaries of forming materials easily eroded than other parts. Changing patterns of surface roughness were investigated with profiles, regression analysis and spectral analysis. Majority of plates showed decrease in small-scale roughness, but it depends on microstructures of the plates rather than general hardness or other factors. SEM inspection results supported this idea.

Routing of Groundwater Component in Open Channel (Saint-Venant 공식(公式)에 의한 개수로(開水路)의 지하수성분(地下水性分) 추적(追跡))

  • Kim, Jae Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.23-32
    • /
    • 1988
  • The rates of infiltration contributed to the flow fo water in an unconfined aquifer under the partially penetrated stream at an ungaged station and the corresponding base flow in channel are coupled by using the hydraulic and/or hydrologic characteristics obtained from the geomorphologic and soil maps. For the determination of groundwater flow, the linearized model which is originally Boussinesq's nonlinear equation is applied in this study. Also, a stream flow routing model for base flow in channel is based on a simplification of the Saint-venant. The distributed runoff model with piecewise spatial uniformity is presented for obtaining its solution based on a finite difference technique of the kinematic wave equations. The method developed in this study was tested to the Bocheong watershed(area : $475.5km^2$) of the natural stream basin which is one of tributaries in Geum River basin in Korea. As a result, it is suggested that the rationality of hydro-graph separation according to a wide variability in hydrogeologic properties be worked out as developing the physically based subsurface model. The results of the present model are shown to be possible to simulate a base flow due to an arbitrary rate of infiltration for ungaged basins.

  • PDF

The Characteristic of Fish Fauna and Distribution by Habitat Type in the Yanghwa Stream of the Namhan River Basins (남한강 수계 양화천의 서식처 유형별 어류상 및 분포특성)

  • Lee, Seung-Hyun;Lee, Hwang-Goo;Shin, Hyun-Seon;Choi, Jun-Kil
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.6
    • /
    • pp.884-891
    • /
    • 2012
  • The characteristic of fish fauna and distribution by habitat type in the Yanghwa stream were investigated from August, 2008 to June, 2009. During the surveyed period, 30 species belonging 8 families were collected. And there were 10 Korea endemic species(33.3%), including Rhodeus uyekii et and so on. Dominant species was Rhodeus notatus, and subdominant species was Pseudorasbora parva. Dominant species according to habitat type was Pseudorasbora parva in Dam type pool and Channel conected pool, Pseudogobio esocinus(Run), Zacco platypus(Riffle), Rhodeus notatus(Side channel and Substrate type pool), Squalidus gracilis majimae(Meander type pool), and Carassius auratus(Channel unconnected pool), respectively. As a results of community analysis in the Yanghwa Stream, diversity, richness, and abundance indices showed relatively high values, indicating that studied stream have relatively stable community structure. Moreover, cluster and principal component analysis were divided by two groups(lotic and lentic habitats), suggest that species and individuals were different among habitat types.