• Title/Summary/Keyword: river basins

Search Result 433, Processing Time 0.022 seconds

Soil Loss Vulnerability Assessment in the Mekong River Basin

  • Thuy, Hoang Thu;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.37-47
    • /
    • 2017
  • The Mekong River plays an extremely important role in Southeast Asia. Flowing through six countries, including China, Myanmar, Thailand, Laos PDR, Cambodia, and Vietnam, it is a site of great biological and ecological diversity and the habitat of numerous species of fish. It also supports a very large population that lives along the river basin. Therefore, much attention has been focused on the giant Mekong River Basin, particularly, its soil erosion and sedimentation problems. In fact, many methods have been used to calculate and simulate these problems. However, in the case of the Mekong River Basin, the available data is limited because of the extreme size of the area (about $795,000km^2$) and lack of equipment systems in the countries through which the Mekong River flows. In this study, we applied the Universal Soil Loss Equation (USLE) model in a GIS (Geographic Information System) framework to calculate the amount of soil erosion and sediment load during the selected period, from 1951 to 2007. The result points out dangerous areas, such as the Upper Mekong River Basin and 3S Basin (containing the Sekong, Sesan, and Srepok Rivers) that are suffering the serious consequences of soil erosion problems. Moreover, the present model is also useful for supporting river basin management in the implementation of sustainable management practices in the Mekong River Basin and other basins.

Landscape Structure and Relationship between Water Quality and Land Use Pattern in the Watershed of the Wangsuk River in Gyunggi-do Korea

  • Lee, Chang-Seok;Lee, An-Na;You, Young-Han
    • The Korean Journal of Ecology
    • /
    • v.24 no.4
    • /
    • pp.253-258
    • /
    • 2001
  • Land use pattern in the Wangsuk river watershed was investigated on the bases of physiognomic vegetation maps made from the aerial photograph interpretation and field check. Landscape structure was analyzed using a GIS program supported by ArcView. Landscape structure depended on the geographical position of the river, such as the upper, middle and lower river. Watersheds of the upper and middle rivers were dominated by forests composed of secondary forest and plantation. But agricultural fields dominated that of the middle and lower river. Urban area and agricultural fields increased in from the upper toward the lower river watersheds. In addition to, a transformation of agricultural pattern into an institutional agriculture was characteristic in the middle and lower river basins. Water qualities of the Wangsuk river were usually better in the order of the upper, middle, and lower river, but they were fluctuated according to the site. Such fluctuation would due to self-purification of the river and land use pattern of the watershed as the non-point source. In this viewpoint, a strategy to manage the water quality in the level of watershed is urgently required.

  • PDF

Outlook on Variation of Water Resources in Korea under SRES A2 Scenario (A2 시나리오에 따른 국내 수자원의 변동성 전망)

  • Bae, Deg-Hyo;Jung, Il-Won;Lee, Byong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.12
    • /
    • pp.921-930
    • /
    • 2007
  • The objective of this study is to present temporal-spatial variation of water resources on climate change impacts using the IPCC SRES A2 scenario and dynamical downscaling of the results (using the MM5 model with a resolution of 27km by 27km) at 139 sub-basins in Korea. The variation of runoff shows differences in the change of rate according to the each sub-basins and analysis durations. It has increased in the sub-basins located in Han river basin and east part of it, the other basins have decreased. In seasonal analysis, runoff in autumn and winter have increased, while in spring and summer have decreased. The results of frequency analyzing classified runoff(Low flow(Q$\leq$5mm), Normal flow(5$\geq$100mm)) show that low flow increase in most of the sub-basins for 2031-2060 and 2061-2090. In the case of high flow, it have higher frequency ranging from -100% to 500% than low flow. Regardless of the variation of mean runoff, maximum discharge appeared to be increase in process of time. The regression method is used to figure out the relationship between the rate of runoff change and mean temperature, mean precipitation under A2 scenario. The mean actual evapotranspirations from the regression equations increased by 3.4$\sim$5.3% for the change of $1^{\circ}C$. Also, for the precipitation change of $\pm$10%, runoff variety range is -18.2$\sim$+12.4% in Han River, -21.6$\sim$+14.6% in Nakdong River, -17.5$\sim$+11.5% in Gum River, -18.4$\sim$+10.6% in Sumjin River, -19.9$\sim$+12.7% Youngsan River basin.

A Study on the Statistical Characteristics of Point Rainfall in Korea: Frequency Analysis (우리 나라 지점 항우의 수문 통계적 특성에 관한 연구 ~적정분포형 설정과 확률항우량산정을 중심으로~)

  • 이원환
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.51-52
    • /
    • 1975
  • 본 논고는 1975년 12월 1일부터 1975년 12월 5일까지 사이에 일본 국동경부 Prince Hotel에서 개최된 "International Symposium on the Hydrological Characteristics of River Basins and the Effects on these Characteristics of Butter Water Management"에서 발표한 내용의 개요를 기술한 것이다.를 기술한 것이다.

  • PDF

Sampling Error of Areal Average Rainfall due to Radar Partial Coverage (부분적 레이더 정보에 따른 면적평균강우의 관측오차)

  • Yoo, Chul-Sang;Ha, Eun-Ho;Kim, Byoung-Soo;Kim, Kyoung-Jun;Choi, Jeong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.545-558
    • /
    • 2008
  • This study estimated the error involved in the areal average rainfall derived from incomplete radar information due to radar partial coverage of a basin or sub-basin. This study considers the Han-River Basin as an application example for the rainfall observation using the Ganghwa rain radar. Among the total of 20 mid-sized sub-basins of the Han-River Basin evaluated in this study, only five sub-basins are fully covered by the radar and three are totally uncovered. Remaining 12 sub-basins are partially covered by the radar to result in incomplete radar information available. When only partial radar information is available, the sampling error decreases proportional to the size of the radar coverage, which also varies depending on the number of clusters. Conditioned that the total area coverage remains the same, the sampling error decreases as the number of clusters increases. This study estimated the sampling error of the areal average rainfall of partially-covered mid-sized sub-basins of the Han- River Basin, and the results show that the sampling error could be at least several % to maximum tens % depending on the relative coverage area.

Application of Proxy-basin Differential Split-Sampling and Blind-Validation Tests for Evaluating Hydrological Impact of Climate Change Using SWAT (SWAT을 이용한 기후변화의 수문학적 영향평가를 위한 Proxy-basin Differential Split-Sampling 및 Blind-Validation 테스트 적용)

  • Son, Kyong-Ho;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.969-982
    • /
    • 2008
  • As hydrological models have been progressively developed, they are recognized as appropriate tools to manage water resources. Especially, the need to evaluate the effects of landuse and climate change on hydrological phenomena has been increased, which requires powerful validation methods for the hydrological models to be employed. As measured streamflow data at many locations may not be available, or include significant errors in application of hydrological models, streamflow data simulated by models only might be used to conduct hydrological analysis. In many cases, reducing errors in model simulations requires a powerful model validation method. In this research, we demonstrated a validation methodology of SWAT model using observed flow in two basins with different physical characteristics. First, we selected two basins, Gap-cheon basin and Yongdam basin located in the Guem River Basin, showing different hydrological characteristics. Next, the methodology developed to estimate parameter values for the Gap-cheon basin was applied for estimating those for the Yongdam basin without calibration a priori, and sought for validation of the SWAT. Application result with SWAT for Yongdam basin showed $R_{eff}$ ranging from 0.49 to 0.85, and $R^{2}$ from 0.49 to 0.84. As well, comparison of predicted flow and measured flow in each subbasin showed reasonable agreement. Furthermore, the model reproduced the whole trends of measured total flow and low flow, though peak flows were rather underestimated. The results of this study suggest that SWAT can be applied for predicting effects of future climate and landuse changes on flow variability in river basins. However, additional studies are recommended to further verify the validity of the mixed method in other river basins.

Calculation of low flow for estimating TMDL (허용 부하량 산정을 위한 저수유량 산정 방안)

  • Jung, Yoon-Min;Kwon, Jae-Hyuk;Kang, Sang-Hyuk
    • Spatial Information Research
    • /
    • v.17 no.2
    • /
    • pp.223-239
    • /
    • 2009
  • The low fow analysis for small-mid sized river basins is very difficult because of insufficient flow data or ungauged basins. The objective of this study is to suggest effective method of low flow using area function method for calculating Total Maximum Daily Loads (TMDL) by considering environmental carrying capacity. Two watersheds which are Juchon watershed having $606km^2$ areas and ungauged watershed having $4,551km^2$ areas were selected for this study. As a result of application, the low flow in the downstream of Juchon River and the Han River after confluence of Okdong River were $1.9m^3/s$ and $20.7m^3/s$, respectively. Then we consider the target BOD of 1.0-1.2mg/l in Youngwol prefecture, the TDML was estimated 164-197kg/day and 1,788-2,146kg/day, respectively. This approach will useful for estimating TDML to insufficient watershed of flow data and ungauged watershed of flow data.

  • PDF

An Analysis of the Effect of Damming on Flow Duration Characteristics of Five Major Rivers in Korea (댐건설(建設)로 인한 5대수계(大水系) 본류(本流)의 유황변화(流況變化) 분석(分析))

  • Lee, Jin Wo;Kim, Hyoung Sup;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.79-91
    • /
    • 1993
  • An analysis of flow duration characteristics of the five major rivers in Korea was conducted with extensive river flow data available. The analysis reveals that, for most river stage-gauging stations at the rivers investigated in this study, the flow duration characteristics have changed drastically at some stations after major dammings in the river basins. Streamflow variability. which is newly defined in this study as the ratio of the 2.5 percents (or 10 day) duration discharge over the 97.5 percents (or 355 day) duration one, was also reduced by the dammings. The result of the study shows that the Han and the Yeongsan rivers have relatively small flow variation, while the Seomjin and the Keum rivers have relatively large now variation, which implies that the latter two river basins need new water resources development.

  • PDF

The Climatological Characteristics of Monthly Precipitation over Han- and Nakdong-river Basins: Part I. Variability of Area Averaged Time Series (한강과 낙동강 유역평균 월강수량의 기후 특성: I. 유역평균 시계열의 변동)

  • Baek, Hee-Jeong;Kwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.111-119
    • /
    • 2005
  • The climatological characteristics of the area averaged monthly precipitation over the Han- and Nakdong-river basins were investigated. The data used for this study is monthly precipitation data from 51 meteorological stations for the period of 1954 to 2002. The magnitude of area averaged precipitation in the Han-river basin was about 10% larger than that in the Nakdong-river basin. However, the variability of two monthly precipitation time series exhibited similar characteristics: April precipitation tends to decrease and August precipitation increase significantly, while there was no significant trend for the other months. There were some indications of abrupt change around the 1970's in the periodicity of precipitation and relationship with El Nino index. September precipitation showed negative correlation with NINO3 index but November precipitation, positive correlation with NINO3 index, indicating a possible connection with the global-scale phenomena.

A Development of Summer Seasonal Rainfall and Extreme Rainfall Outlook Using Bayesian Beta Model and Climate Information (기상인자 및 Bayesian Beta 모형을 이용한 여름철 계절강수량 및 지속시간별 극치 강수량 전망 기법 개발)

  • Kim, Yong-Tak;Lee, Moon-Seob;Chae, Byung-Soo;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.655-669
    • /
    • 2018
  • In this study, we developed a hybrid forecasting model based on a four-parameter distribution which allows a simultaneous season-ahead forecasting for both seasonal rainfall and sub-daily rainfall in Han-River and Geum-River basins. The proposed model is mainly utilized a set of time-varying predictors and the associated model parameters were estimated within a Bayesian nonstationary rainfall frequency framework. The hybrid forecasting model was validated through an cross-validatory experiment using the recent rainfall events during 2014~2017 in both basins. The seasonal precipitation results showed a good agreement with the observations, which is about 86.3% and 98.9% in Han-River basin and Geum-River basin, respectively. Similarly, for the extreme rainfalls at sub-daily scale, the results showed a good correspondence between the observed and simulated rainfalls with a range of 65.9~99.7%. Therefore, it can be concluded that the proposed model could be used to better consider climate variability at multiple time scales.